skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Hybrid Adsorption and Biological Treatment Systems (HABiTS) for Enhanced Nitrogen Removal in Onsite Wastewater Treatment
Twenty-five United Nations member states in the wider Caribbean region ratified the Cartagena Convention, which covers the marine environment of the Gulf of Mexico, the Caribbean Sea and some parts of the Atlantic Ocean. The Land-Based Sources and Activities protocol (LBS Protocol) of that convention addresses nutrient pollution from sewage discharges, agricultural runoff and other sources. Unfortunately, most Caribbean people use conventional onsite wastewater treatment systems (OWTs), especially septic systems. These systems fail to remove nitrogen effectively, posing a challenge for near shore environments. Passive biological nitrogen removal (BNR) processes have been developed for OWTs that rely on simple packed bed bioreactors, with little energy or chemical inputs and low operations and maintenance (O&M) requirements. This paper provides a case study from Florida on the partnerships and pathways for research to develop an innovative technology, Hybrid Adsorption and Biological Treatment System (HABiTS), for nitrogen reduction in OWTs. HABiTS combine ion exchange materials and BNR to remove nitrogen from septic tank effluent and buffer transient loadings. HABiTS, employs natural zeolite material (e.g. clinoptilolite) and expanded clay in the first stage to achieve both ammonium ion exchange and nitrification. The second stage of HABiTS utilizes tire chips, elemental sulphur pellets and oyster shells for adsorption of nitrate as well as sulphur oxidizing denitrification. Under transient load applications, the nitrogen in excess of the biodegradation capacity during high loading events was partially retained within the ion exchange and adsorption materials and readily available later for the microorganisms during lower loading events. Results from a bench scale bioreactor study with marine wastewater, which is relevant to where seawater is used for toilet flushing, are also presented. Pilot scale tests on the OWT of an engaged stakeholder dependent on the marine environment, would contribute to broader discussions for paradigm shifts for nutrient removal from wastewater.  more » « less
Award ID(s):
1735320 1243510
PAR ID:
10112111
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
27th Caribbean Water and Wastewater Conference & Exhibition Proceedings
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A Novel Community Engaged System Thinking Approach to Controlling Nutrient Pollution in the Belize Cayes Nutrient pollution (anthropogenic discharge of nitrogen and phosphate) is a major concern in many parts of the world. Excess nutrient discharge into nutrient limited waters can cause toxic algal blooms that lead to hypoxic zones, fish die-offs, and overgrowth on reefs. This can lead to coral reefs being more vulnerable to global warming and ocean acidification. For coastal communities that depend of fishing and tourism for their livelihood, and for reefs to protect coastlines, these effects can be devastating. A major source of nutrient input into the aquatic environment is poorly treated wastewater from Onsite Wastewater Treatment Systems (OWTS). When properly sited, built, and maintained conventional OWTS are great for removing fats, grease, biological oxygen demand (BOD), and total suspended solids (TSS), but they are rarely designed for nutrient removal and commonly have high nutrient levels in their effluent. This study investigates the factors that influence the performance of OWTS, the Caribbean region’s most common type of treatment technology, in the Belizean Cayes where salt water flushing is common. Using mass-balance-based models for existing and proposed OWTS to predict the system’s performance under various conditions, along with OWTS’ owner, maintainer, and user input, a novel community engaged system thinking approach to controlling nutrient pollution will be developed. Key model performance metrics are concentrations of nitrogen species, BOD, and TSS in the effluent. To demonstrate the model’s utility, a sensitivity analysis was performed for case studies in Belize, estimating the impact on nutrient removal efficiency when changes are made to variables such as number of daily users, idle periods, tank number and volume, oxygen concentration and recirculation. For the systems considered here, strategies such as aeration, increased biodigester tank size, addition of aerobic and anoxic biodigesters, recirculation, addition of a carbon source, ion exchange media is predicted to decrease the effluent nitrogen concentration, and integration of vegetation for nutrient uptake both on land and in the nearshore environment. In a previous case, the addition of an aerator was predicted to decrease the effluent ammonium concentration by 13%, whereas increasing the biodigester tank size would only decrease the effluent ammonium concentration by ~7%. Model results are shared with system manufacturers and operators to prioritize possible modifications, thereby optimizing the use of finite resources, namely time and money, for costly trial-and-error improvement efforts. 
    more » « less
  2. Algae-based wastewater treatment systems have the potential to reduce the energy cost of wastewater treatment processes by utilizing solar energy for biomass growth and nutrient removal. NH4+-N concentrations as high as 200- 300 mg/L are known to inhibit algae growth. Many research studies on the treatment of centrate after anaerobic digestion have been published recently. However, in these studies the centrate was diluted for the growth of algae due to the high NH4+-N concentrations, which are toxic to algae. Alternative solutions are necessary to treat high NH4+-N strength wastewater without addition of freshwater. Zeolites are natural hydrated aluminosilicate minerals that have been used to reduce ammonium inhibition on microorganisms due to their high affinity for ammonium ions. It is possible to use the ion-exchange (IX) capacity of zeolite to reduce the toxicity of ammonia to algae. Importantly, the zeolite, which becomes saturated with ammonium, can be reused as a slow release fertilizer. The objectives of this research were to evaluate the impact of zeolite dosage on the nutrient removal efficiency for high strength wastewater and develop mathematical models to predict the performance of hybrid IX and algae growth systems with varying doses of zeolite. 
    more » « less
  3. Recalcitrant phosphorus (P) species, i.e., soluble non-reactive phosphorus (sNRP), are generally not effectively removed or recovered in conventional wastewater treatment processes. This was substantiated in our meta-analysis, which showed that nearly one-third of wastewater facilities’ effluent P was primarily in the non-reactive form. Transformation of sNRP to more readily removable/recoverable soluble reactive phosphorus (sRP) may offer a viable pathway to enhance P removal and recovery. Electrooxidation (EO) may offer one route for sNRP to sRP transformation. During EO, different sNRP transformation pathways may occur, influencing the extent and efficiency of sNRP transformations as a function of water quality. To explore these mechanisms, we conducted oxidant quenching tests as well as cyclic voltammetry and chronoamperometry experiments using a synthetic water matrix spiked with the sNRP compound beta-glycerol phosphate (BGP). We found that direct electron transfer was responsible for BGP transformation. To assess the applicability of EO for wastewater sNRP to sRP transformation and improved recoverability, EO was used to treat municipal wastewater centrate, followed by tests of sNRP recoverability using the P-selective LayneRT™ ion exchanger. Complete transformation of centrate sNRP to sRP was not achieved with EO, but subsequent removal of sNRP using ion exchange increased after 2 hr of EO treatment. Longer periods of EO treatment did not improve sNRP removal. Improved sNRP adsorption after EO was likely due to decreased competing organics in the centrate after EO treatment. Overall, this study showed that EO can improve sNRP removal using subsequent ion exchange and facilitate enhanced P recovery. 
    more » « less
  4. Nitrate is a frequent water pollutant that results from human activities such as fertilizer over-application and agricultural runoff and improper disposal of human and animals waste. Excess levels of nitrate in watersheds can trigger harmful algal blooms (HABs) and biodiversity loss with consequences that affect the economy and pose a threat to human health. Municipal drinking water and wastewater treatment plants are therefore required to control nitrogen levels to ensure the safety of drinking water and the proper discharge of effluent. Nitrate exhibits distinct absorption bands in the infrared spectral range. While infrared radiation is strongly attenuated in water, implementation of fiber optic evanescent wave spectroscopy (FEWS) enables monitoring of water contaminants in real-time with high sensitivity. This work outlines the development of a non-dispersive infrared (NDIR) detector for the real-time monitoring of nitrate, nitrite and ammonia concentrations targeting implementation at municipal wastewater treatment plants (WWTPs) and onsite wastewater treatment systems (OWTS). 
    more » « less
  5. Onsite wastewater treatment systems (OWTSs), such as septic systems, are widely used in the United States, with 16.4% of households relying on them. OWTSs process approximately 4 billion gallons of wastewater per day, yet only about half is safely treated. Identifying factors contributing to impaired functionality is crucial for developing effective management and monitoring strategies and protecting environmental and human health. This study uses a machine learning approach and a unique data set from Athens-Clarke County, Georgia, to predict OWTS failures based on environmental and system-specific variables. The three main predictors of impaired OWTS function were the number of bedrooms (25.4%), height above stream (18.6%), and system age (16.2%), with both older and younger systems prone to failure. Our findings suggest there is a need to reevaluate construction guidelines for effective tank and drainfield sizing, placement, and construction, and our findings indicate that additional training for permitters, installers, and homeowners may be beneficial. Our work demonstrates the power of using machine learning to assess OWTS function, which can better enable local governments and environment managers to identify areas in need of infrastructure and educational investment with limited data and highlights the data types that local jurisdictions should prioritize for collection. 
    more » « less