This research is focused on how to support students’ acquisition of program construction skills through worked examples. Although examples have been consistently proven to be valuable for student’s learning, the learning technology for computer science education lacks program construction examples with interactive elements that could engage students. The goal of this work is to investigate the value of the “engaging” features in programming examples. We introduce PCEX, an online tool developed to present program construction examples in an engaging fashion. We also present the results of a controlled study with a between-subject design that was conducted in a large introductory Python programming class to compare PCEX with non-interactive worked examples focused on program construction. The results of our study show the positive impact of interactive program construction examples on student’s engagement, problem-solving performance, and learning.
more »
« less
PCEX: Interactive Program Construction Examples for Learning Programming
A sizable body of research on instructional practices supports the use of worked examples for acquiring cognitive skills in domains such as mathematics and physics. Although examples are also important in the domain of programming, existing research on programming examples is limited. Program examples are used by instructors to achieve two important goals: to explain program behavior and to demonstrate program construction patterns. Program behavior examples are used to demonstrate the semantics of various program constructs (i.e., what is happening inside a program or an algorithm when it is executed). Program construction examples illustrate how to construct a program that achieves a specific purpose. While both functions of program examples are important for learning, most of the example-focused research in computer science education focused on technologies for augmenting program behavior examples such as program visualization, tracing tables, etc. In contrast, advanced technologies for presenting program construction examples were rarely explored. This work introduces interactive Program Construction Examples (PCEX) to begin a systematic exploration of worked-out program construction examples in the domain of computer science education. A classroom evaluation and analysis of the survey data demonstrated that the usage of PCEX examples is associated with better student's learning and performance.
more »
« less
- Award ID(s):
- 1740775
- PAR ID:
- 10112138
- Date Published:
- Journal Name:
- 18th Koli Calling International Conference on Computing Education Research
- Page Range / eLocation ID:
- 1 to 9
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Worked examples are an educational tool widely used in introductory computer science classes, primarily for programming and code-tracing concepts. Prior research supports the use of worked examples as a scaffolding mechanism to help students build a solid foundation before tackling problems on their own. Whether breaking down the intricacies of code or explaining abstract theoretical concepts, worked examples offer a structured approach that nurtures a deeper understanding during self-study. This study explores how peer-created worked examples, shown through detailed step-by-step videos, aid student learning in an intermediate-level computer science course, namely computer systems. Our results suggest that worked-example videos are a useful study aid for intermediate computer science courses, such as computer systems. Students who watched the worked-example videos found them to be very helpful, and ranked them as the top study aid for succeeding on quizzes. Additionally, students with access to worked-example videos performed moderately better on quizzes compared to students without worked-example videos. Our results and experiences also suggest that worked-example videos are beneficial to the students who created them as well as their peers who use them.more » « less
-
Novice programmers can greatly improve their understanding of challenging programming concepts by studying worked examples that demonstrate the implementation of these concepts. Despite the extensive repositories of effective worked examples created by CS education experts, a key challenge remains: identifying the most relevant worked example for a given programming problem and the specific difficulties a student faces solving the problem. Previous studies have explored similar example recommendation approaches. Our research introduces a novel method by utilizing deep learning code representation models to generate code vectors, capturing both syntactic and semantic similarities among programming examples. Driven by the need to provide relevant and personalized examples to programming students, our approach emphasizes similarity assessment and clustering techniques to identify similar code problems, examples, and challenges. This method aims to deliver more accurate and contextually relevant recommendations based on individual learning needs. Providing tailored support to students in real-time facilitates better problem-solving strategies and enhances students' learning experiences, contributing to the advancement of programming education.more » « less
-
null (Ed.)Subgoal labels are function-based instructional explanations that describe the problem-solving steps to the learner, highlighting the solution process. There is strong evidence that the use of subgoal labels within worked examples improves student learning in other STEM fields. Initial research shows that using subgoal labels within computer science improves student learning, but this has only been tested using a single programming concept (indefinite loops) with text-based programming languages. The proposers are currently expanding subgoal labels to the main programming concepts taught in an introductory programming course using an imperative programming language. In this BOF we seek to uncover tacit knowledge that programming instructors have in order to develop instructional materials that bridge the gap between students, who are CS novices, and instructors, who are CS experts, to improve learning for students who are under-prepared for or struggle in CS1. We will be seeking feedback on the selection of programming topics to be covered, the defined subgoals for those topics and the worked examples created for instructional purposes.more » « less
-
null (Ed.)The construction field trip is an interactive and essential component of construction education, and its significance is widely recognized by educators and researchers in the construction domain. However, due to its real-world nature, there are several challenges that limit the extensive employment of this teaching approach. A few examples of such spatiotemporal challenges are time conflict, large class sizes, short site visit duration, and not being able to see or hear in a crowded or noisy environment. Construction educators and researchers have been using virtual field trips to support traditional field trips or offer an alternative when these learning opportunities are not available. This paper presents the current status of virtual field trip application in construction education while specifically focusing on the construction subject areas, technology use, and learning assessment techniques used in those virtual field trips. The review shows that VFT has been mostly integrated with construction courses in fundamental and introductory level, and their learning objectives are mainly general and broad without a specific focus on certain construction aspects or techniques. The technologies to develop VFTs can be categorized into captured-reality using regular or 360 images or videos and virtual reality using computer-generated simulation of reality. Advantages and disadvantages of both technologies are discussed. Interview and questionnaires were mainly used to assess the reviewed VFT as a learning tool, and it is reported that in the majority of those papers, the feedback from students is mostly positive. These outcomes provide construction educators and researchers insights on successful implementation and potential challenges of virtual field trips in construction education.more » « less
An official website of the United States government

