The Department of Biological Sciences at Minnesota State University, Mankato has recently implemented a first year undergraduate research experience (called the Research Immersive Scholastic Experience in Biology program; RISEbio) designed to improve student success and engagement in biology. In this program, first year students exchange introductory biology labs for the RISEbio curriculum, where they learn basic laboratory, analytical and scientific reasoning skills before beginning authentic mentored research projects in their second and third semesters. Students in one of three research tracks examine the neural control of reproductive behavior by examining gene expression in the brain of the seasonally breeding green anole lizard (Anolis carolinensis). Working in groups, students gain experience with bioinformatics by examining preliminary RNA-seq data and selecting a gene of interest. Then, students design and test primers to amplify their gene of interest, followed by isolating RNA from the hypothalamus of breeding and non-breeding lizard brains. Lastly, students utilize their isolated RNA samples and validated primers in quantitative RT-PCR studies to determine if their gene of interest is differentially expressed in the anole brain. Preliminary work has identified melatonin receptor 1A (MTNR1A) as more highly expressed in the breeding compared to non-breeding anole hypothalamus, while corticotropin releasing hormone binding protein (CRHBP) expression does not differ seasonally. Together with other aspects of the RISEbio program, these early research experiences have led to increased student outcomes, including increased academic success and enhanced scientific motivation.
more »
« less
Localization and quanti cation of kisspeptin and gonadotropin inhibitory hormone in green anole lizards (anolis carolinensis)
It has been well supported among mammalian species that the hypothalamicpituitary- gonad (HPG) axis is regulated positively by kisspeptin and negatively by gonadotropin inhibitory hormone (GnIH). Studies with seasonal breeding models have generally shown higher levels of kisspeptin in areas of the hypothalamus associated with reproduction, such as the preoptic area (POA) and arcuate nucleus, during the breeding season. Conversely, when examining models during the non-breeding season, studies have indicated GnIH to be higher in hypothalamic nuclei, such as the POA. However, kisspeptin’s role in regulating reproduction may not be consistent among all vertebrate groups. While kisspeptin has been shown to upregulate reproduction in mammals, this peptide has not been detected in avian species and recent work in sh has suggested that kisspeptin may not play a regulatory role in reproduction. Relatively little is known about these peptides in reptiles and the seasonal regulation of kisspeptin and GnIH has not been investigated in this group. Green anole lizards (Anolis carolinensis) have a distinct breeding and nonbreeding season, and during the breeding season, steroid hormone levels in the plasma are elevated, males are more territorial, and display reproductive behaviors at a higher frequency. Previous work in this species has demonstrated that, in non-breeding anoles, kisspeptin-positive neurons were present in the POA and the dorsomedial hypothalamus. It is currently unknown whether kisspeptin expression is altered in breeding lizards and there is no data available on GnIH expression in this species. We hypothesize that there is a seasonal effect on kisspeptins and GnIH in green anole lizards, with kisspeptins more highly expressed in the breeding season, while GnIH is more highly expressed in the non-breeding season. Preliminary data using quantitative PCR has revealed no signicant dierence between seasons in the expression of kiss1, kiss2, and Gnih mRNA from a dissection of the brain that contained the hypothalamus (F ≤ 4.35, p ≥ 0.053, n = 4-6 per group). Although we did not detect a significant difference between seasons, expression in specific regions may differ. Therefore, using fluorescent in situ hybridization, we aim to determine the localization and expression levels of kiss1, kiss2 and Gnih expression throughout the hypothalamus. This study expands upon available data and bridges the evolutionary gaps in the roles of kisspeptin and GnIH in regulating reproduction.
more »
« less
- Award ID(s):
- 1726859
- PAR ID:
- 10112194
- Date Published:
- Journal Name:
- Abstracts - Society for Neuroscience
- ISSN:
- 0190-5295
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Since the invention of electric lighting, artificial light at night (ALAN) has become a defining, and evolutionary novel, feature of human-altered environments especially in cities. ALAN imposes negative impacts on many organisms, including disrupting endocrine function, metabolism, and reproduction. However, we do not know how generalized these impacts are across taxa that exploit urban environments. We exposed brown anole lizards, an abundant and invasive urban exploiter, to relevant levels of ALAN in the laboratory and assessed effects on growth and reproduction at the start of the breeding season. Male and female anoles exposed to ALAN increased growth and did not suffer increased levels of corticosterone. ALAN exposure induced earlier egg-laying, likely by mimicking a longer photoperiod, and increased reproductive output without reducing offspring quality. These increases in growth and reproduction should increase fitness. Anoles, and potentially other taxa, may be resistant to some negative effects of ALAN and able to take advantage of the novel niche space ALAN creates. ALAN and both its negative and positive impacts may play a crucial role in determining which species invade and exploit urban environments.more » « less
-
Abstract Seasonal changes in reproduction have been described for many taxa. As reproductive seasons progress, females often shift from greater energetic investment in many small offspring towards investing less total energy into fewer, better provisioned (i.e. larger) offspring. The underlying causes of this pattern have not been assessed in many systems.Two primary hypotheses have been proposed to explain these patterns. The first is an adaptive hypothesis from life‐history theory: early offspring have a survival advantage over those produced later. Accordingly, selection favours females that invest in offspring quantity early in the season and offspring quality later. The second hypothesis suggests these patterns are not intrinsic but result from passive responses to seasonal changes in the environment experienced by reproducing females (i.e. maternal environment).To disentangle the causes underlying this pattern, which has been reported in brown anole lizards (Anolis sagrei), we performed complementary field and laboratory studies. The laboratory study carefully controlled maternal environments and quantified reproductive patterns throughout the reproductive season for each female. The field study measured similar metrics from free ranging lizards across an entire reproductive season.In the laboratory, females increased relative effort per offspring as the reproductive season progressed; smaller eggs were laid earlier, larger eggs were laid later. Moreover, we observed significant among‐individual variation in seasonal changes in reproduction, which is necessary for traits to evolve via natural selection. Because these patterns consistently emerge under controlled laboratory conditions, they likely represent an intrinsic and potentially adaptive adjustment of reproductive effort as predicted by life‐history theory.The field study revealed similar trends, further suggesting that intrinsic patterns observed in the laboratory are strong enough to persist despite the environmental variability that characterizes natural habitats. The observed patterns are indicative of an adaptive seasonal shift in parental investment in response to a deteriorating offspring environment: allocating greater resources to late‐produced offspring likely enhances maternal fitness.more » « less
-
Abstract Global climate change is driving species' distributions towards the poles and mountain tops during both non‐breeding and breeding seasons, leading to changes in the composition of natural communities. However, the degree of season differences in climate‐driven community shifts has not been thoroughly investigated at large spatial scales.We compared the rates of change in the community composition during both winter (non‐breeding season) and summer (breeding) and their relation to temperature changes.Based on continental‐scale data from Europe and North America, we examined changes in bird community composition using the community temperature index (CTI) approach and compared the changes with observed regional temperature changes during 1980–2016.CTI increased faster in winter than in summer. This seasonal discrepancy is probably because individuals are less site‐faithful in winter, and can more readily shift their wintering sites in response to weather in comparison to the breeding season. Regional long‐term changes in community composition were positively associated with regional temperature changes during both seasons, but the pattern was only significant during summer due to high annual variability in winter communities. Annual changes in community composition were positively associated with the annual temperature changes during both seasons.Our results were broadly consistent across continents, suggesting some climate‐driven restructuring in both European and North American avian communities. Because community composition has changed much faster during the winter than during the breeding season, it is important to increase our knowledge about climate‐driven impacts during the less‐studied non‐breeding season.more » « less
-
Abstract Changes in leaf phenology from warming spring and autumn temperatures have lengthened the temperate zone growing “green” season and breeding window for migratory birds in North America. However, the fitness benefits of an extended breeding season will depend, in part, on whether species have sufficient dietary flexibility to accommodate seasonal changes in prey availability. We used fecal DNA metabarcoding to test the hypothesis that seasonal changes in the diets of the insectivorous, migratory black‐throated blue warbler (Setophaga caerulescens) track changes in the availability of arthropod prey at the Hubbard Brook Experimental Forest, New Hampshire, USA. We examined changes across the breeding season and along an elevation gradient encompassing a 2‐week difference in green season length. From 98 fecal samples, we identified 395 taxa from 17 arthropod orders; 242 were identified to species, withCecrita guttivitta(saddled prominent moth),Theridion frondeum(eastern long‐legged cobweaver), andPhilodromus rufus(white‐striped running crab spider) occurring at the highest frequency. We found significant differences in diet composition between survey periods and weak differences among elevation zones. Variance in diet composition was highest late in the season, and diet richness and diversity were highest early in the season. Diet composition was associated with changes in prey availability surveyed over the green season. However, several taxa occurred in diets more or less than expected relative to their frequency of occurrence from survey data, suggesting that prey selection or avoidance sometimes accompanies opportunistic foraging. This study demonstrates that black‐throated blue warblers exhibit diet flexibility and track seasonal changes in prey availability, which has implications for migratory bird responses to climate‐induced changes in insect communities with longer green seasons.more » « less
An official website of the United States government

