skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Applications and Challenges in Securing Time
In this paper, we establish the importance of trusted time for the safe and correct operation of various applications. There are, however, challenges in securing time against hardware timer manipulation, software attacks, and ma- licious network delays on current systems. To provide security of time, we explore the timing capabilities of trusted execution technologies that put their root of trust in hardware. A key concern is that these technologies do not protect time integrity and are susceptible to various timing attacks by a malicious operating system and an untrusted network. We argue that it is essential to safeguard time-based primitives across all layers of a time stack – the hardware timers, platform software, and network time packets. This paper provides a detailed examination of vulnerabilities in current time services, followed by a set of requirements to build a secure time architecture.  more » « less
Award ID(s):
1705135
PAR ID:
10112205
Author(s) / Creator(s):
;
Date Published:
Journal Name:
12th USENIX Workshop on Cyber Security Experimentation and Test
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. With the ever-increasing virtualization of software and hardware, the privacy of user-sensitive data is a fundamental concern in computation outsourcing. Secure processors enable a trusted execution environment to guarantee security properties based on the principles of isolation, sealing, and integrity. However, the shared hardware resources within the microarchitecture are increasingly being used by co-located adversarial software to create timing-based side-channel attacks. State-of-the-art secure processors implement the strong isolation primitive to enable non-interference for shared hardware, but suffer from frequent state purging and resource utilization overheads, leading to degraded performance. This paper proposes ASM , an adaptive secure multicore architecture that enables a reconfigurable, yet strongly isolated execution environment. For outsourced security-critical processes, the proposed security kernel and hardware extensions allow either a given process to execute using all available cores, or co-execute multiple processes on strongly isolated clusters of cores. This spatio-temporal execution environment is configured based on resource demands of processes, such that the secure processor mitigates state purging overheads and maximizes hardware resource utilization. 
    more » « less
  2. Program obfuscation is a popular cryptographic construct with a wide range of uses such as IP theft prevention. Although cryptographic solutions for program obfuscation impose impractically high overheads, a recent breakthrough leveraging trusted hardware has shown promise. However, the existing solution is based on special-purpose trusted hardware, restricting its use-cases to a limited few. In this paper, we first study if such obfuscation is feasible based on commodity trusted hardware, Intel SGX, and we observe that certain important security considerations are not afforded by commodity hardware. In particular, we found that existing obfuscation/obliviousness schemes are insecure if directly applied to Intel SGX primarily due to side-channel limitations. To this end, we present OBFUSCURO, the first system providing program obfuscation using commodity trusted hardware, Intel SGX. The key idea is to leverage ORAM operations to perform secure code execution and data access. Initially, OBFUSCURO transforms the regular program layout into a side-channel secure and ORAM-compatible layout. Then, OBFUSCURO ensures that its ORAM controller performs data oblivious accesses in order to protect itself from all memory-based side-channels. Furthermore, OBFUSCURO ensures that the program is secure from timing attacks by ensuring that the program always runs for a pre-configured time interval. Along the way, OBFUSCURO also introduces a systematic optimization such as register-based ORAM stash. We provide a thorough security analysis of OBFUSCURO along with empirical attack evaluations showing that OBFUSCURO can protect the SGX program execution from being leaked by access pattern-based and timing-based channels. We also provide a detailed performance benchmark results in order to show the practical aspects of OBFUSCURO. 
    more » « less
  3. As our reliance on micro autonomous vehicles in- creases, security vulnerabilities and software defects threaten the successful completion of tasks and missions. Recent work has developed end-to-end toolchains that provide trusted and resilient operation in the face of defects and attacks. These toolchains enable automatically repairing (and patching) the control software in the event of a failure. Existing techniques force the subject control software to terminate and the vehicle to be motionless, making the restart or post-repair deployment more complex and slow. The challenge remains to ensure that vehicle control software can recover from attacks and defects quickly and safely, even while the target vehicle remains in motion. This paper presents a technique for faster, simpler, and seamless hardware switchover that operates while the vehicle is in motion. The key contribution is the ability to restart the control software post-repair while the vehicle is in motion by transplanting sensor data between onboard control computers to bypass a costly portion of initialization. Although existing check- point and restore methods allow software to recover execution at a known-functional state, they are not lightweight enough to support recovery during mission execution. Instead, our approach transplants known-good sensor data from a trusted, isolated execution environment in the onboard computing hardware. Our evaluation successfully reproduces prior simulation results in hardware. Further, sensor transplantation allows for successful initialization while in motion, reduces time-to-ready by 40%, and is robust to variances in sensor readings. 
    more » « less
  4. An increasing number of Trusted Execution Environment (TEE) is adopting to a variety of commercial products for protecting data security on the cloud. However, TEEs are still exposed to various side-channel vulnerabilities, such as execution order-based, timing-based, and power-based vulnerabilities. While recent hardware is applying various techniques to mitigate order-based and timing-based side-channel vulnerabilities, power-based side-channel attacks remain a concern of hardware security, especially for the confidential computing settings where the server machines are beyond the control of cloud users. In this paper, we present PWRLEAK, an attack framework that exploits AMD’s power reporting interfaces to build power side-channel attacks against AMD Secure Encrypted Virtualization (SEV)-protected VM. We design and implement the attack framework with three general steps: (1) identify the instruction running inside AMD SEV, (2) apply a power interpolator to amplify power consumption, including an emulation-based interpolator for analyzing purposes and a moregeneral interrupt-based interpolator, and (3) infer secrets with various analysis approaches. A case study of using the emulation-based interpolator to infer the whole JPEG images processed by libjpeg demonstrates its ability to help analyze power consumption inside SEV VM. Our end-to-end attacks against Intel’s Integrated Performance Primitives (Intel IPP) library indicates that PWRLEAK can be exploited to infer RSA private keys with over 80% accuracy using the interrupt based interpolator. 
    more » « less
  5. null (Ed.)
    An accurate sense of elapsed time is essential for the safe and correct operation of hardware, software, and networked systems. Unfortunately, an adversary can manipulate the system's time and violate causality, consistency, and scheduling properties of underlying applications. Although cryptographic techniques are used to secure data, they cannot ensure time security as securing a time source is much more challenging, given that the result of inquiring time must be delivered in a timely fashion. In this paper, we first describe general attack vectors that can compromise a system's sense of time. To counter these attacks, we propose a secure time architecture, TIMESEAL that leverages a Trusted Execution Environment (TEE) to secure time-based primitives. While CPU security features of TEEs secure code and data in protected memory, we show that time sources available in TEE are still prone to OS attacks. TIMESEAL puts forward a high-resolution time source that protects against the OS delay and scheduling attacks. Our TIMESEAL prototype is based on Intel SGX and provides sub-millisecond (msec) resolution as compared to 1-second resolution of SGX trusted time. It also securely bounds the relative time accuracy to msec under OS attacks. In essence, TIMESEAL provides the capability of trusted timestamping and trusted scheduling to critical applications in the presence of a strong adversary. It delivers all temporal use cases pertinent to secure sensing, computing, and actuating in networked systems. 
    more » « less