skip to main content


Title: Large Eddy Simulation of a Turbulent Wake behind a Body of Revolution at ReD=5000
This study is concerned with the numerical investigation of a three-dimensional wake behind a body of revolution via Large-eddy Simulations. Large-eddy Simulations with the Reynolds number $Re_D=5000$ based on the bluff body diameter is performed using a high-order spectral-element solver Nek5000. The focus of the study is on characterizing the wake asymmetries and time-dependent behavior observed in previous experimental studies with similar bluff body models. The time-dependent history of the wake meandering and rotating behavior will be presented.  more » « less
Award ID(s):
1707075
NSF-PAR ID:
10112474
Author(s) / Creator(s):
;
Publisher / Repository:
AIAA Aviation Forum and Exposition
Date Published:
Journal Name:
AIAA Aviation Forum and Exposition, Dallas, TX, June 2019
Format(s):
Medium: X
Location:
Dallas, TX
Sponsoring Org:
National Science Foundation
More Like this
  1. The presence of large-scale coherent structures can significantly impact the dynamics of a turbulent flow field and the behaviour of a flame stabilized in that flow. The goal of this study is to analyse how increasing free-stream turbulence can change the response of the flow to longitudinal acoustic excitation of varying amplitudes. We study the flow in the wake of a cylindrical bluff body at both non-reacting and reacting conditions, as the presence of a flame can significantly alter the global stability of the flow. The frequency of longitudinal acoustic excitation is set to match the natural frequency of anti-symmetric vortex shedding for this configuration and we vary the free-stream turbulence using perforated plates upstream of the bluff body. The results show that varying the level of free-stream turbulence can influence not only the amplitude of the coherent flow response, but also the symmetry of vortex shedding in the presence of longitudinal acoustic excitation. Increasing the turbulence intensity can fundamentally change the structure of the time-averaged flow and can directly impact the coherent flow response in two ways. First, increasing turbulence intensity can enhance the amplitude of the natural anti-symmetric vortex shedding mode in the wake. Second, increasing turbulence intensity weakens the symmetric response of the flow to the longitudinal acoustic excitation. In the non-reacting and reacting conditions, both symmetric and anti-symmetric modes are present and are characterized using a spectral proper orthogonal decomposition. We see evidence of interaction between the symmetric and anti-symmetric modes, which leads to an interference pattern in the coherent vorticity response in the shear layers. We conclude by presenting a conceptual model for the influence that turbulence has on these flows. 
    more » « less
  2. Near-wall flow simulation remains a central challenge in aerodynamics modelling: Reynolds-averaged Navier–Stokes predictions of separated flows are often inaccurate, and large-eddy simulation (LES) can require prohibitively small near-wall mesh sizes. A deep learning (DL) closure model for LES is developed by introducing untrained neural networks into the governing equations and training in situ for incompressible flows around rectangular prisms at moderate Reynolds numbers. The DL-LES models are trained using adjoint partial differential equation (PDE) optimization methods to match, as closely as possible, direct numerical simulation (DNS) data. They are then evaluated out-of-sample – for aspect ratios, Reynolds numbers and bluff-body geometries not included in the training data – and compared with standard LES models. The DL-LES models outperform these models and are able to achieve accurate LES predictions on a relatively coarse mesh (downsampled from the DNS mesh by factors of four or eight in each Cartesian direction). We study the accuracy of the DL-LES model for predicting the drag coefficient, near-wall and far-field mean flow, and resolved Reynolds stress. A crucial challenge is that the LES quantities of interest are the steady-state flow statistics; for example, a time-averaged velocity component $\langle {u}_i\rangle (x) = \lim _{t \rightarrow \infty } ({1}/{t}) \int _0^t u_i(s,x)\, {\rm d}s$ . Calculating the steady-state flow statistics therefore requires simulating the DL-LES equations over a large number of flow times through the domain. It is a non-trivial question whether an unsteady PDE model with a functional form defined by a deep neural network can remain stable and accurate on $t \in [0, \infty )$ , especially when trained over comparatively short time intervals. Our results demonstrate that the DL-LES models are accurate and stable over long time horizons, which enables the estimation of the steady-state mean velocity, fluctuations and drag coefficient of turbulent flows around bluff bodies relevant to aerodynamics applications. 
    more » « less
  3. The interaction between upstream flow disturbance generators and downstream aeroelastic structures has been the focus of several recent studies at North Carolina State University. Building on this work, which observed the modulation of limit cycle oscillations (LCOs) in the presence of vortex wakes, this study examines the design and validation of a novel disturbance generator consisting of an oscillating cylinder with an attached splitter plate. Analytical design of the bluff body was performed based on specific flow conditions which produced LCO annihilation in previous studies. Computational fluid dynamics simulations and experimental wind tunnel tests were used to validate the ability of the new disturbance generator to produce the desired wake region. Future work will see the implementation of this novel design in conjunction with aeroelastic structures in an effort to modulate and control LCOs, including the excitation and annihilation thereof. 
    more » « less
  4. Abstract The inverted flag configuration is inspired by biological structures (e.g. leaves on a tree branch), showing rich dynamics associated with instabilities at lower flow speeds than the regular flag configuration. In the biological counterpart, the arrangement of leaves and twigs on foliage creates a complex interacting environment that promotes certain dynamic fluttering modes. While enabling a large amplitude response for reduced flow speeds is advantageous in emerging fields such as energy harvesting, still, little is known about the consequence of such interactions. In this work, we numerically study the canonical bio-inspired problem of the flow-structural interaction of a 2D inverted flag behind a cylindrical bluff body, mimicking a leaf behind a tree branch, to investigate its distinct fluttering regimes. The separation distance between the cylinder and flag is gradually modified to determine the effective distance beyond which small-amplitude or large-amplitude flapping occurs for different flow velocities. It is shown that the flag exhibits a periodic large amplitude−low frequency response mode when the cylinder is placed at a sufficiently large distance in front of the flag. At smaller distances, when the flag is within the immediate wake of the cylinder, the flag undergoes a high frequency−small amplitude response. Finally, the flag’s piezoelectric power harvesting capability is investigated numerically and experimentally for varying geometrical and electrical parameters associated with these two conditions. Two separate optimal response modes with the highest energy output have also been identified. 
    more » « less
  5. Abstract Large-eddy simulations (LES) are employed to investigate the role of time-varying currents on the form drag and vortex dynamics of submerged 3D topography in a stratified rotating environment. The current is of the form U c + U t sin(2 πf t t ), where U c is the mean, U t is the tidal component, and f t is its frequency. A conical obstacle is considered in the regime of low Froude number. When tides are absent, eddies are shed at the natural shedding frequency f s , c . The relative frequency is varied in a parametric study, which reveals states of high time-averaged form drag coefficient. There is a twofold amplification of the form drag coefficient relative to the no-tide ( U t = 0) case when lies between 0.5 and 1. The spatial organization of the near-wake vortices in the high drag states is different from a Kármán vortex street. For instance, the vortex shedding from the obstacle is symmetric when and strongly asymmetric when . The increase in form drag with increasing stems from bottom intensification of the pressure in the obstacle lee which we link to changes in flow separation and near-wake vortices. 
    more » « less