In this paper, we introduce the notion of a certified algorithm. Certified algorithms provide worstcase and beyondworstcase performance guarantees. First, a γcertified algorithm is also a γapproximation algorithm  it finds a γapproximation no matter what the input is. Second, it exactly solves γperturbationresilient instances (γperturbationresilient instances model reallife instances). Additionally, certified algorithms have a number of other desirable properties: they solve both maximization and minimization versions of a problem (e.g. Max Cut and Min Uncut), solve weakly perturbationresilient instances, and solve optimization problems with hard constraints. In the paper, we define certified algorithms, describe their properties, present a frameworkmore »
BiluLinial Stability, Certified Algorithms and the Independent Set Problem
We study the classic Maximum Independent Set problem under the notion of stability introduced by Bilu and Linial (2010): a weighted instance of Independent Set is γstable if it has a unique optimal solution that remains the unique optimal solution under multiplicative perturbations of the weights by a factor of at most γ ≥ 1. The goal then is to efficiently recover this “pronounced” optimal solution exactly. In this work, we solve stable instances of Independent Set on several classes of graphs: we improve upon previous results by solving \tilde{O}(∆/sqrt(log ∆))stable instances on graphs of maximum degree ∆, (k − 1)stable instances on kcolorable graphs and (1 + ε)stable instances on planar graphs (for any fixed ε > 0), using both combinatorial techniques as well as LPs and the SheraliAdams hierarchy.
For general graphs, we give an algorithm for (εn)stable instances, for any fixed ε > 0, and lower bounds based on the planted clique conjecture. As a byproduct of our techniques, we give algorithms as well as lower bounds for stable instances of Node Multiway Cut (a generalization of Edge Multiway Cut), by exploiting its connections to Vertex Cover. Furthermore, we prove a general structural result showing that the integrality more »
 Publication Date:
 NSFPAR ID:
 10112618
 Journal Name:
 27th Annual European Symposium on Algorithms (ESA 2019)
 Volume:
 27
 Page Range or eLocationID:
 25:1–25:16
 Sponsoring Org:
 National Science Foundation
More Like this


The Sparsest Cut is a fundamental optimization problem that have been extensively studied. For planar inputs the problem is in P and can be solved in Õ(n 3 ) time if all vertex weights are 1. Despite a significant amount of effort, the best algorithms date back to the early 90’s and can only achieve O(log n)approximation in Õ(n) time or 3.5approximation in Õ(n 2 ) time [Rao, STOC92]. Our main result is an Ω(n 2−ε ) lower bound for Sparsest Cut even in planar graphs with unit vertex weights, under the (min, +)Convolution conjecture, showing that approxima tions aremore »

We give two new quantum algorithms for solving semidefinite programs (SDPs) providing quantum speedups. We consider SDP instances with m constraint matrices, each of dimension n, rank at most r, and sparsity s. The first algorithm assumes an input model where one is given access to an oracle to the entries of the matrices at unit cost. We show that it has run time O~(s^2 (sqrt{m} epsilon^{10} + sqrt{n} epsilon^{12})), with epsilon the error of the solution. This gives an optimal dependence in terms of m, n and quadratic improvement over previous quantum algorithms (when m ~~ n). The secondmore »

In the k cut problem, we want to find the lowestweight set of edges whose deletion breaks a given (multi)graph into k connected components. Algorithms of Karger and Stein can solve this in roughly O ( n 2k ) time. However, lower bounds from conjectures about the k clique problem imply that Ω ( n (1 o (1)) k ) time is likely needed. Recent results of Gupta, Lee, and Li have given new algorithms for general k cut in n 1.98k + O(1) time, as well as specialized algorithms with better performance for certain classes of graphs (e.g., formore »

Goaoc, Xavier ; Kerber, Michael (Ed.)We consider the following surveillance problem: Given a set P of n sites in a metric space and a set R of k robots with the same maximum speed, compute a patrol schedule of minimum latency for the robots. Here a patrol schedule specifies for each robot an infinite sequence of sites to visit (in the given order) and the latency L of a schedule is the maximum latency of any site, where the latency of a site s is the supremum of the lengths of the time intervals between consecutive visits to s. When k = 1 the problemmore »