skip to main content


Title: Periodic Control of Unmanned Aerial Vehicles Based on Differential Flatness
Unmanned aerial vehicles (UAVs) are making increasingly long flights today with significantly longer mission times. This requires the UAVs to have long endurance as well as have long range capabilities. Motivated by locomotory patterns in birds and marine animals which demonstrate a powered-coasting-powered periodic locomotory behavior, an optimal control problem is formulated to study UAV trajectory planning. The concept of differential flatness is used to reformulate the optimal control problem as a nonlinear programing problem where the flat outputs are parameterized using Fourier series. The Π test is also used to verify the existence of a periodic solution which outperforms the steady-state motion. An example of an Aerosonde UAV is used to illustrate the improvement in endurance and range costs of the periodic control solutions relative to the equilibrium flight.  more » « less
Award ID(s):
1537210
NSF-PAR ID:
10112842
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Dynamic Systems, Measurement, and Control
Volume:
141
Issue:
7
ISSN:
0022-0434
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    To mitigate the long-term spectrum crunch problem, the FCC recently opened up the 6 GHz frequency band for unlicensed use. However, the existing spectrum sharing strategies cannot support the operation of access points in moving vehicles such as cars and UAVs. This is primarily because of the directionality-based spectrum sharing among the incumbent systems in this band and the high mobility of the moving vehicles, which together make it challenging to control the cross-system interference. In this paper we propose SwarmShare, a mobility-resilient spectrum sharing framework for swarm UAV networking in the 6 GHz band. We first present a mathematical formulation of the SwarmShare problem, where the objective is to maximize the spectral efficiency of the UAV network by jointly controlling the flight and transmission power of the UAVs and their association with the ground users, under the interference constraints of the incumbent system. We find that there are no closed-form mathematical models that can be used characterize the statistical behaviors of the aggregate interference from the UAVs to the incumbent system. Then we propose a data-driven three-phase spectrum sharing approach, including Initial Power Enforcement, Offline-dataset Guided Online Power Adaptation, and Reinforcement Learning-based UAV Optimization. We validate the effectiveness of SwarmShare through an extensive simulation campaign. Results indicate that, based on SwarmShare, the aggregate interference from the UAVs to the incumbent system can be effectively controlled below the target level without requiring the real-time cross-system channel state information. The mobility resilience of SwarmShare is also validated in coexisting networks with no precise UAV location information. 
    more » « less
  2. A framework for autonomous waypoint planning, trajectory generation through waypoints, and trajectory tracking for multi-rotor unmanned aerial vehicles (UAVs) is proposed in this work. Safe and effective operations of these UAVs is a problem that demands obstacle avoidance strategies and advanced trajectory planning and control schemes for stability and energy efficiency. To address this problem, a two-level optimization strategy is used for trajectory generation, then the trajectory is tracked in a stable manner. The framework given here consists of the following components: (a) a deep reinforcement learning (DRL)-based algorithm for optimal waypoint planning while minimizing control energy and avoiding obstacles in a given environment; (b) an optimal, smooth trajectory generation algorithm through waypoints, that minimizes a combinaton of velocity, acceleration, jerk and snap; and (c) a stable tracking control law that determines a control thrust force for an UAV to track the generated trajectory. 
    more » « less
  3. null (Ed.)
    The increasing availability of autonomous smallsize Unmanned Aerial Vehicles (UAVs) has provided a promising way for data gathering from Wireless Sensor Networks (WSNs) with the advantages of high mobility, flexibility, and good speed. However, few works considered the situations that multiple UAVs are collaboratively used and the fine-grained trajectory plans of multiple UAVs are devised for collecting data from network including detailed traveling and hovering plans of them in the continuous space. In this paper, we investigate the problem of the Fine-grained Trajectory Plan for multi-UAVs (FTP), in which m UAVs are used to collect data from a given WSN, where m ≥ 1. The problem entails not only to find the flight paths of multiple UAVs but also to design the detailed hovering and traveling plans on their paths for efficient data gathering from WSN. The objective of the problem is to minimize the maximum flight time of UAVs such that all sensory data of WSN is collected by the UAVs and transported to the base station. We first propose a mathematical model of the FTP problem and prove that the problem is NP-hard. To solve the FTP problem, we first study a special case of the FTP problem when m = 1, called FTP with Single UAV (FTPS) problem. Then we propose a constantfactor approximation algorithm for the FTPS problem. Based on the FTPS problem, an approximation algorithm for the general version of the FTP problem when m > 1 is further proposed, which can guarantee a constant factor of the optimal solution. Afterwards, the proposed algorithms are verified by extensive simulations. 
    more » « less
  4. To integrate unmanned aerial vehicles (UAVs) in future large-scale deployments, a new wireless communication paradigm, namely, the cellular-connected UAV has recently attracted interest. However, the line-of-sight dominant air-to-ground channels along with the antenna pattern of the cellular ground base stations (GBSs) introduce critical interference issues in cellular-connected UAV communications. In particular, the complex antenna pattern and the ground reflection (GR) from the down-tilted antennas create both coverage holes and patchy coverage for the UAVs in the sky, which leads to unreliable connectivity from the underlying cellular network. To overcome these challenges, in this paper, we propose a new cellular architecture that employs an extra set of co-channel antennas oriented towards the sky to support UAVs on top of the existing down-tilted antennas for ground user equipment (GUE). To model the GR stemming from the down-tilted antennas, we propose a path-loss model, which takes both antenna radiation pattern and configuration into account. Next, we formulate an optimization problem to maximize the minimum signal-to-interference ratio (SIR) of the UAVs by tuning the up-tilt (UT) angles of the up-tilted antennas. Since this is an NP-hard problem, we propose a genetic algorithm (GA) based heuristic method to optimize the UT angles of these antennas. After obtaining the optimal UT angles, we integrate the 3GPP Release-10 specified enhanced inter-cell interference coordination (eICIC) to reduce the interference stemming from the down-tilted antennas. Our simulation results based on the hexagonal cell layout show that the proposed interference mitigation method can ensure higher minimum SIRs for the UAVs over baseline methods while creating minimal impact on the SIR of GUEs. 
    more » « less
  5. null (Ed.)
    Gliding birds perform feats that challenge even our most advanced similar-sized unmanned aerial vehicles (UAV). Their ostensible skill supports a pervasive belief that birds are highly efficient gliders that outperform modern UAVs. which led us to ask: are gliding birds truly more efficient than UAVs? Avian flight efficiency a well-studied topic and often cited as the inspiration for novel UAV designs. Despite the multitude of studies that have quantified the aerodynamic efficiency of gliding birds, there is no comprehensive summary of their findings. This is problematic because differing methodologies have inconsistent levels of uncertainty. As such, the lack of consolidated information on gliding bird efficiency inhibits a true comparison to UAVs. To fill this gap, we surveyed published theoretical and experimental estimates of avian aerodynamic efficiency and investigated the uncertainty of each method. We found that there was substantial variation in the aerodynamic efficiency predicted by different methods, which can lead to disparate conclusions on gliding bird efficiency. Our survey showed that measurements on live birds gliding in wind tunnels provide a reliable minimum estimate on a birds’ aerodynamic efficiency and allows the quantification of the wing configurations used in flight. Next, we surveyed the aeronautical literature to collect all published aerodynamic efficiencies of similar-sized, non-copter UAVs. The consolidated information allowed a direct comparison of modern UAVs and gliding birds. Contrary to our expectation, we found that there is no definitive evidence that any gliding bird species is either more or less efficient than a similar-sized UAV. This non-result highlights a critical need for new technology and analytical advances that can reduce the uncertainty associated with estimating a gliding bird’s aerodynamic efficiency. Nevertheless, our survey indicated that UAV designs informed by species flying within subcritical regimes may extend their operational range into lower Reynolds number regimes. 
    more » « less