skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: SwarmShare: Mobility-Resilient Spectrum Sharing for Swarm UAV Networking in the 6 GHz Band
To mitigate the long-term spectrum crunch problem, the FCC recently opened up the 6 GHz frequency band for unlicensed use. However, the existing spectrum sharing strategies cannot support the operation of access points in moving vehicles such as cars and UAVs. This is primarily because of the directionality-based spectrum sharing among the incumbent systems in this band and the high mobility of the moving vehicles, which together make it challenging to control the cross-system interference. In this paper we propose SwarmShare, a mobility-resilient spectrum sharing framework for swarm UAV networking in the 6 GHz band. We first present a mathematical formulation of the SwarmShare problem, where the objective is to maximize the spectral efficiency of the UAV network by jointly controlling the flight and transmission power of the UAVs and their association with the ground users, under the interference constraints of the incumbent system. We find that there are no closed-form mathematical models that can be used characterize the statistical behaviors of the aggregate interference from the UAVs to the incumbent system. Then we propose a data-driven three-phase spectrum sharing approach, including Initial Power Enforcement, Offline-dataset Guided Online Power Adaptation, and Reinforcement Learning-based UAV Optimization. We validate the effectiveness of SwarmShare through an extensive simulation campaign. Results indicate that, based on SwarmShare, the aggregate interference from the UAVs to the incumbent system can be effectively controlled below the target level without requiring the real-time cross-system channel state information. The mobility resilience of SwarmShare is also validated in coexisting networks with no precise UAV location information.  more » « less
Award ID(s):
2030157
PAR ID:
10294460
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
2021 18th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON)
Page Range / eLocation ID:
1 to 9
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Telecommunication industries and spectrum regulation authorities are increasingly interested in unlocking the 12 GHz band for two-way 5G terrestrial services. The 12 GHz band has a much larger bandwidth than the current sub-6 GHz band and better propagation characteristics than the millimeter wave (mmWave) band. Thus, the 12 GHz band offers great potential for improving the coverage and capacity of terrestrial 5G networks. However, interference issues between incumbent receivers and 5G radio links present a major challenge in the 12 GHz band. If one could exploit the dynamic contexts inherent to the 12 GHz band, one could reform spectrum sharing policy to create spectrum access opportunities for 5G mobile services. This article makes three contributions. First, it presents the characteristics and challenges of the 12 GHz band. Second, we explain the characteristics and requirements for spectrum sharing at a variety of levels to resolve those issues. Lastly, we present several research opportunities to enable harmonious coexistence of incumbent licensees and 5G networks within the 12 GHz band. 
    more » « less
  2. Spectrum sharing between terrestrial 5G and incumbent networks in the satellite bands presents a promising avenue to satisfy the ever-increasing bandwidth demand of the next-generation wireless networks. However, protecting incumbent operations from harmful interference poses a fundamental challenge in accommodating terrestrial broadband cellular networks in the satellite bands. State-of-the-art spectrum-sharing policies usually consider several worst-case assumptions and ignore site-specific contextual factors in making spectrum-sharing decisions, and thus, often results in under-utilization of the shared band for the secondary licensees. To address such limitations, this paper introduces CAT3S (Context-Aware Terrestrial-Satellite Spectrum Sharing) framework that empowers the coexisting terrestrial 5G network to maximize utilization of the shared satellite band without creating harmful interference to the incumbent links by exploiting the contextual factors. CAT3S consists of the following two components: (i) context-acquisition unit to collect and process essential contextual information for spectrum sharing and (ii) context-aware base station (BS) control unit to optimize the set of operational BSs and their operation parameters (i.e., transmit power and active beams per sector). To evaluate the performance of the CAT3S, a realistic spectrum coexistence case study over the 12 GHz band is considered. Experiment results demonstrate that the proposed CAT3S achieves notably higher spectrum utilization than state-of-the-art spectrum-sharing policies in different weather contexts. 
    more » « less
  3. In dynamic spectrum access (DSA), Environmental Sensing Capability (ESC) systems are implemented to detect the incumbent users' (IU) activities for protecting them from secondary users' (SU) interference as well as maximizing secondary spectrum usage. However, IU location information is often highly sensitive and hence it is preferable to hide its true location under the detection of ESCs. In this paper, we design novel schemes to preserve both static and moving IU's location information by adjusting IU's radiation pattern and transmit power. We first formulate IU privacy protection problem for static IU. Due to the intractable nature of this problem, we propose a heuristic approach based on sampling. We also formulate the privacy protection problem for moving IUs, in which two cases are analyzed: (1) protect IU's moving traces; (2) protect its real-time current location information. Our analysis provides insightful advice for IU to preserve its location privacy against ESCs. Simulation results show that our approach provides great protection for IU's location privacy. 
    more » « less
  4. Abstract Sixth-generation wireless networks will aggregate higher-than-ever mobile traffic into ultra-high capacity backhaul links, which could be deployed on the largely untapped spectrum above 100 GHz. Current regulations however prevent the allocation of large contiguous bands for communications at these frequencies, since several narrow bands are reserved to protect passive sensing services. These include radio astronomy and Earth exploration satellites using sensors that suffer from harmful interference from active transmitters. Here we show that active and passive spectrum sharing above 100 GHz is feasible by introducing and experimentally evaluating a real-time, dual-band backhaul prototype that tracks the presence of passive users (in this case the NASA satellite Aura) and avoids interference by automatically switching bands (123.5–140 GHz and 210–225 GHz). Our system enables wide-band transmissions in the above-100-GHz spectrum, while avoiding harmful interference to satellite systems, paving the way for innovative spectrum policy and technologies in these crucial bands. 
    more » « less
  5. The use of Millimeter-wave (mmWave) spectrum in cellular communications has recently attracted growing interest to support the expected massive increase in traffic demands. However, the high path-loss at mmWave frequencies poses severe challenges. In this paper, we analyze the potential coverage gains of using unmanned aerial vehicles (UAVs), as hovering relays, in integrated access and backhaul (IAB) mmWave cellular scenarios. Specifically, we utilize the WinProp software package, which employs ray tracing methodology, to study the propagation characteristics of outdoor mmWave channels at 30 and 60 GHz frequency bands in a Manhattan-like environment. In doing so, we propose the implementation of amplify-and-forward (AF) and decode-and-forward (DF) relaying mechanisms in the WinProp software. We show how the 3D deployment of UAVs can be defined based on the coverage ray tracing maps at access and backhaul links. Furthermore, we propose an adaptive UAV transmission power for the AF relaying. We demonstrate, with the aid of ray tracing simulations, the performance gains of the proposed relaying modes in terms of downlink coverage, and the received signal to interference and noise ratio (SINR). 
    more » « less