skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Title: Impacts of the North Atlantic warming hole in future climate projections: mean atmospheric circulation and the North Atlantic jet
In future climate simulations there is a pronounced region of reduced warming in the subpolar gyre of the North Atlantic Ocean known as the North Atlantic warming hole (NAWH). This study investigates the impact of the North Atlantic warming hole on atmospheric circulation and midlatitude jets within the Community Earth System Model (CESM). A series of large-ensemble atmospheric model experiments with prescribed sea surface temperature (SST) and sea ice are conducted, in which the warming hole is either filled or deepened. Two mechanisms through which the NAWH impacts the atmosphere are identified: a linear response characterized by a shallow atmospheric cooling and increase in sea level pressure shifted slightly downstream of the SST changes, and a transient eddy forced response whereby the enhanced SST gradient produced by the NAWH leads to increased transient eddy activity that propagates vertically and enhances the midlatitude jet. The relative contributions of these two mechanisms and the details of the response are strongly dependent on the season, time period, and warming hole strength. Our results indicate that the NAWH plays an important role in midlatitude atmospheric circulation changes in CESM future climate simulations  more » « less
Award ID(s):
1734760
PAR ID:
10112965
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of climate
Volume:
32
ISSN:
0894-8755
Page Range / eLocation ID:
2673-2689
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Decadal sea surface temperature (SST) fluctuations in the North Atlantic Ocean influence climate over adjacent land areas and are a major source of skill in climate predictions. However, the mechanisms underlying decadal SST variability remain to be fully understood. This study isolates the mechanisms driving North Atlantic SST variability on decadal time scales using low-frequency component analysis, which identifies the spatial and temporal structure of low-frequency variability. Based on observations, large ensemble historical simulations, and preindustrial control simulations, we identify a decadal mode of atmosphere–ocean variability in the North Atlantic with a dominant time scale of 13–18 years. Large-scale atmospheric circulation anomalies drive SST anomalies both through contemporaneous air–sea heat fluxes and through delayed ocean circulation changes, the latter involving both the meridional overturning circulation and the horizontal gyre circulation. The decadal SST anomalies alter the atmospheric meridional temperature gradient, leading to a reversal of the initial atmospheric circulation anomaly. The time scale of variability is consistent with westward propagation of baroclinic Rossby waves across the subtropical North Atlantic. The temporal development and spatial pattern of observed decadal SST variability are consistent with the recent observed cooling in the subpolar North Atlantic. This suggests that the recent cold anomaly in the subpolar North Atlantic is, in part, a result of decadal SST variability. 
    more » « less
  2. Abstract Canonical understanding based on general circulation models (GCMs) is that the atmospheric circulation response to midlatitude sea‐surface temperature (SST) anomalies is weak compared to the larger influence of tropical SST anomalies. However, the ∼100‐km horizontal resolution of modern GCMs is too coarse to resolve strong updrafts within weather fronts, which could provide a pathway for surface anomalies to be communicated aloft. Here, we investigate the large‐scale atmospheric circulation response to idealized Gulf Stream SST anomalies in Community Atmosphere Model (CAM6) simulations with 14‐km regional grid refinement over the North Atlantic, and compare it to the responses in simulations with 28‐km regional refinement and uniform 111‐km resolution. The highest resolution simulations show a large positive response of the wintertime North Atlantic Oscillation (NAO) to positive SST anomalies in the Gulf Stream, a 0.4‐standard‐deviation anomaly in the seasonal‐mean NAO for 2°C SST anomalies. The lower‐resolution simulations show a weaker response with a different spatial structure. The enhanced large‐scale circulation response results from an increase in resolved vertical motions with resolution and an associated increase in the influence of SST anomalies on transient‐eddy heat and momentum fluxes in the free troposphere. In response to positive SST anomalies, these processes lead to a stronger and less variable North Atlantic jet, as is characteristic of positive NAO anomalies. Our results suggest that the atmosphere responds differently to midlatitude SST anomalies in higher‐resolution models and that regional refinement in key regions offers a potential pathway to improve multi‐year regional climate predictions based on midlatitude SSTs. 
    more » « less
  3. In future climate projections there is a notable lack of warming in the North Atlantic subpolar gyre, known as the North Atlantic warming hole (NAWH). In a set of large-ensemble atmospheric simulations with the Community Earth System Model, the NAWH was previously shown to contribute to the projected poleward shift and eastward elongation of the North Atlantic jet. The current study investigates the impact of the warming hole on sensible weather, particularly over Europe, using the same simulations. North Atlantic jet regimes are classified within the model simulations by applying self-organizing maps analysis to winter daily wind speeds on the dynamic tropopause. The NAWH is found to increase the prevalence of jet regimes with stronger and more-poleward-shifted jets. A previously identified transient eddy-mean response to the NAWH that leads to a downstream enhancement of wind speeds is found to be dependent on the jet regime. These localized regime-specific changes vary by latitude and strength, combining to form the broad increase in seasonal-mean wind speeds over Eurasia. Impacts on surface temperature and precipitation within the various North Atlantic jet regimes are also investigated. A large decrease in surface temperature over Eurasia is found to be associated with the NAWH in regimes where air masses are advected eastward over the subpolar gyre prior to reaching Eurasia. Precipitation is found to be locally suppressed over the warming hole region and increased directly downstream. The impact of this downstream response on coastal European precipitation is dependent on the strength of the NAWH. 
    more » « less
  4. Abstract Transient climate sensitivity is strongly shaped by geographical patterns of ocean heat uptake (OHU). To isolate the effects of uncertainties associated with OHU, a single slab ocean model is forced with doubled CO2and an ensemble of OHU patterns diagnosed from transient warming scenarios in 12 fully coupled models. The single-model ensemble produces a wide range of Southern Ocean (SO) sea surface temperature (SST) and Antarctic sea ice responses, which are in turn associated with a 1.1–2.0-K range of transient climate response (TCR). Feedback analysis attributes the TCR spread primarily to shortwave effects of low clouds in the Southern Hemisphere (SH) midlatitudes. These cloud changes are strongly positively correlated with storm-track eddy kinetic energy. It is argued that midlatitude clouds (and thus planetary albedo) are remotely driven by SO SST and Antarctic sea ice, mediated by large-scale changes in SH baroclinicity and lower-tropospheric stability. The robustness of this atmospheric teleconnection between SO SST, Antarctic sea ice, and global feedback through midlatitude clouds is supported through additional simulations that explore more extreme SST and sea ice perturbations. These results highlight the importance of understanding physical relationships between SST, sea ice, circulation, and cloud changes in the SH as a pathway to better constraining transient climate sensitivity. Significance StatementAlthough it is well known that Earth’s global-mean surface temperature increases with increasing atmospheric CO2, there are still significant uncertainties in the temperature and sea ice trends over the Southern Ocean region. Using a climate model, we find that Southern Ocean temperature and Antarctic sea ice changes can result in substantial cloud cover changes over the Southern Hemisphere, which play a primary role in determining the amount of warming in our experiments. We suggest that, in order to reduce uncertainty in future climate change, more work is needed to understand how the climate of the southern polar region can affect the circulation and clouds of the midlatitudes. 
    more » « less
  5. Abstract Over the past century, the subpolar North Atlantic experienced slight cooling or suppressed warming, relative to the background positive temperature trends, often dubbed the North Atlantic warming hole (NAWH). The causes of the NAWH remain under debate. Here we conduct coupled ocean-atmosphere simulations to demonstrate that enhanced Indian Ocean warming, another salient feature of global warming, could increase local rainfall and through teleconnections strengthen surface westerly winds south of Greenland, cooling the subpolar North Atlantic. In decades to follow however, this cooling effect would gradually vanish as the Indian Ocean warming acts to strengthen the Atlantic meridional overturning circulation (AMOC). We argue that the historical NAWH can potentially be explained by such atmospheric mechanisms reliant on surface wind changes, while oceanic mechanisms related to AMOC changes become more important on longer timescales. Thus, explaining the North Atlantic temperature trends and particularly the NAWH requires considering both atmospheric and oceanic mechanisms. 
    more » « less