Abstract Observations reveal two distinct patterns of atmospheric variability associated with wintertime variations in midlatitude sea surface temperatures (SSTs) in the North Pacific sector: 1) a pattern of atmospheric circulation anomalies that peaks 2–3 weeks prior to large SST anomalies in the western North Pacific that is consistent with “atmospheric forcing” of the SST field, and 2) a pattern that lags SST anomalies in the western North Pacific by several weeks that is consistent with the “atmospheric response” to the SST field. Here we explore analogous lead–lag relations between the atmospheric circulation and western North Pacific SST anomalies in two sets of simulations run on the NCAR Community Earth System Model version 1 (CESM1): 1) a simulation run on a fully coupled version of CESM1 and 2) a simulation forced with prescribed, time-evolving SST anomalies over the western North Pacific region. Together, the simulations support the interpretation that the observed lead–lag relationships between western North Pacific SST anomalies and the atmospheric circulation reveal the patterns of atmospheric variability that both force and respond to midlatitude SST anomalies. The results provide numerical evidence that SST variability over the western North Pacific has a demonstrable effect on the large-scale atmospheric circulation throughout the North Pacific sector.
more »
« less
Resolving Weather Fronts Increases the Large‐Scale Circulation Response to Gulf Stream SST Anomalies in Variable‐Resolution CESM2 Simulations
Abstract Canonical understanding based on general circulation models (GCMs) is that the atmospheric circulation response to midlatitude sea‐surface temperature (SST) anomalies is weak compared to the larger influence of tropical SST anomalies. However, the ∼100‐km horizontal resolution of modern GCMs is too coarse to resolve strong updrafts within weather fronts, which could provide a pathway for surface anomalies to be communicated aloft. Here, we investigate the large‐scale atmospheric circulation response to idealized Gulf Stream SST anomalies in Community Atmosphere Model (CAM6) simulations with 14‐km regional grid refinement over the North Atlantic, and compare it to the responses in simulations with 28‐km regional refinement and uniform 111‐km resolution. The highest resolution simulations show a large positive response of the wintertime North Atlantic Oscillation (NAO) to positive SST anomalies in the Gulf Stream, a 0.4‐standard‐deviation anomaly in the seasonal‐mean NAO for 2°C SST anomalies. The lower‐resolution simulations show a weaker response with a different spatial structure. The enhanced large‐scale circulation response results from an increase in resolved vertical motions with resolution and an associated increase in the influence of SST anomalies on transient‐eddy heat and momentum fluxes in the free troposphere. In response to positive SST anomalies, these processes lead to a stronger and less variable North Atlantic jet, as is characteristic of positive NAO anomalies. Our results suggest that the atmosphere responds differently to midlatitude SST anomalies in higher‐resolution models and that regional refinement in key regions offers a potential pathway to improve multi‐year regional climate predictions based on midlatitude SSTs.
more »
« less
- Award ID(s):
- 2128409
- PAR ID:
- 10533229
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Advances in Modeling Earth Systems
- Volume:
- 16
- Issue:
- 7
- ISSN:
- 1942-2466
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Abstract Decadal sea surface temperature (SST) fluctuations in the North Atlantic Ocean influence climate over adjacent land areas and are a major source of skill in climate predictions. However, the mechanisms underlying decadal SST variability remain to be fully understood. This study isolates the mechanisms driving North Atlantic SST variability on decadal time scales using low-frequency component analysis, which identifies the spatial and temporal structure of low-frequency variability. Based on observations, large ensemble historical simulations, and preindustrial control simulations, we identify a decadal mode of atmosphere–ocean variability in the North Atlantic with a dominant time scale of 13–18 years. Large-scale atmospheric circulation anomalies drive SST anomalies both through contemporaneous air–sea heat fluxes and through delayed ocean circulation changes, the latter involving both the meridional overturning circulation and the horizontal gyre circulation. The decadal SST anomalies alter the atmospheric meridional temperature gradient, leading to a reversal of the initial atmospheric circulation anomaly. The time scale of variability is consistent with westward propagation of baroclinic Rossby waves across the subtropical North Atlantic. The temporal development and spatial pattern of observed decadal SST variability are consistent with the recent observed cooling in the subpolar North Atlantic. This suggests that the recent cold anomaly in the subpolar North Atlantic is, in part, a result of decadal SST variability.more » « less
-
In future climate simulations there is a pronounced region of reduced warming in the subpolar gyre of the North Atlantic Ocean known as the North Atlantic warming hole (NAWH). This study investigates the impact of the North Atlantic warming hole on atmospheric circulation and midlatitude jets within the Community Earth System Model (CESM). A series of large-ensemble atmospheric model experiments with prescribed sea surface temperature (SST) and sea ice are conducted, in which the warming hole is either filled or deepened. Two mechanisms through which the NAWH impacts the atmosphere are identified: a linear response characterized by a shallow atmospheric cooling and increase in sea level pressure shifted slightly downstream of the SST changes, and a transient eddy forced response whereby the enhanced SST gradient produced by the NAWH leads to increased transient eddy activity that propagates vertically and enhances the midlatitude jet. The relative contributions of these two mechanisms and the details of the response are strongly dependent on the season, time period, and warming hole strength. Our results indicate that the NAWH plays an important role in midlatitude atmospheric circulation changes in CESM future climate simulationsmore » « less
-
Abstract While the Madden‐Julian oscillation (MJO) is known to influence the midlatitude circulation and its predictability on subseasonal‐to‐seasonal timescales, little is known how this connection may change with anthropogenic warming. This study investigates changes in the causal pathways between the MJO and the North Atlantic oscillation (NAO) within historical and SSP585 simulations of the Community Earth System Model 2‐Whole Atmosphere Community Climate Model (CESM2‐WACCM) coupled climate model. Two data‐driven approaches are employed, namely, the STRIPES index and graphical causal models. These approaches collectively indicate that the MJO's influence on the North Atlantic strengthens in the future, consistent with an extended jet‐stream. In addition, the graphical causal models allow us to distinguish the causal pathways associated with the teleconnections. While both a stratospheric and tropospheric pathway connect the MJO to the North Atlantic in CESM2‐WACCM, the strengthening of the MJO‐NAO causal connection over the 21st century is shown to be due exclusively to teleconnections via the tropospheric pathway.more » « less
-
Abstract Ocean variability is a dominant source of remote rainfall predictability, but in many cases the physical mechanisms driving this predictability are not fully understood. This study examines how ocean mesoscales (i.e., the Gulf Stream SST front) affect decadal Southeast US (SEUS) rainfall, arguing that the local imprint of large‐scale teleconnections is sensitive to resolved mesoscale features. Based on global coupled model experiments with eddying and eddy‐parameterizing ocean, we find that a resolved Gulf Stream improves localized rainfall and remote circulation response in the SEUS. The eddying model generally improves the air‐sea interactions in the Gulf Stream and the North Atlantic Subtropical High that modulate SEUS rainfall over decadal timescales. The eddy‐parameterizing simulation fails to capture the sharp SST gradient associated with the Gulf Stream and overestimates the role of tropical Pacific SST anomalies in the SEUS rainfall.more » « less