- Award ID(s):
- 1660643
- PAR ID:
- 10112967
- Date Published:
- Journal Name:
- Practical assessment, research & evaluation
- Volume:
- 24
- Issue:
- 7
- ISSN:
- 1531-7714
- Page Range / eLocation ID:
- 1-13
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Constructed responses can be used to assess the complexity of student thinking and can be evaluated using rubrics. The two most typical rubric types used are holistic and analytic. Holistic rubrics may be difficult to use with expert-level reasoning that has additive or overlapping language. In an attempt to unpack complexity in holistic rubrics at a large scale, we have developed a systematic approach called deconstruction. We define deconstruction as the process of converting a holistic rubric into defining individual conceptual components that can be used for analytic rubric development and application. These individual components can then be recombined into the holistic score which keeps true to the holistic rubric purpose, while maximizing the benefits and minimizing the shortcomings of each rubric type. This paper outlines the deconstruction process and presents a case study that shows defined concept definitions for a hierarchical holistic rubric developed for an undergraduate physiology-content reasoning context. These methods can be used as one way for assessment developers to unpack complex student reasoning, which may ultimately improve reliability and validation of assessments that are targeted at uncovering large-scale complex scientific reasoning.more » « less
-
The Framework for K-12 Science Education recognizes modeling as an essential practice for building deep understanding of science. Modeling assessments should measure the ability to integrate Disciplinary Core Ideas and Crosscutting Concepts. Machine learning (ML) has been utilized to score and provide feedback on open-ended Learning Progression (LP)-aligned assessments. Analytic rubrics have been shown to be easier to evaluate the validity of ML-based scores. A possible drawback of using analytic rubrics is the potential for oversimplification of integrated ideas. We demonstrate the deconstruction of a 3D holistic rubric for modeling assessments aligned LP for Physical Science. We describe deconstructing this rubric into analytic categories for ML training and to preserve its 3D nature.more » « less
-
Abstract The core concept of genetic information flow was identified in recent calls to improve undergraduate biology education. Previous work shows that students have difficulty differentiating between the three processes of the Central Dogma (CD; replication, transcription, and translation). We built upon this work by developing and applying an analytic coding rubric to 1050 student written responses to a three‐question item about the CD. Each response was previously coded only for correctness using a holistic rubric. Our rubric captures subtleties of student conceptual understanding of each process that previous work has not yet captured at a large scale. Regardless of holistic correctness scores, student responses included five or six distinct ideas. By analyzing common co‐occurring rubric categories in student responses, we found a common pair representing two normative ideas about the molecules produced by each CD process. By applying analytic coding to student responses preinstruction and postinstruction, we found student thinking about the processes involved was most prone to change. The combined strengths of analytic and holistic rubrics allow us to reveal mixed ideas about the CD processes and provide a detailed picture of which conceptual ideas students draw upon when explaining each CD process.
-
null (Ed.)Abstract We systematically compared two coding approaches to generate training datasets for machine learning (ML): (i) a holistic approach based on learning progression levels and (ii) a dichotomous, analytic approach of multiple concepts in student reasoning, deconstructed from holistic rubrics. We evaluated four constructed response assessment items for undergraduate physiology, each targeting five levels of a developing flux learning progression in an ion context. Human-coded datasets were used to train two ML models: (i) an 8-classification algorithm ensemble implemented in the Constructed Response Classifier (CRC), and (ii) a single classification algorithm implemented in LightSide Researcher’s Workbench. Human coding agreement on approximately 700 student responses per item was high for both approaches with Cohen’s kappas ranging from 0.75 to 0.87 on holistic scoring and from 0.78 to 0.89 on analytic composite scoring. ML model performance varied across items and rubric type. For two items, training sets from both coding approaches produced similarly accurate ML models, with differences in Cohen’s kappa between machine and human scores of 0.002 and 0.041. For the other items, ML models trained with analytic coded responses and used for a composite score, achieved better performance as compared to using holistic scores for training, with increases in Cohen’s kappa of 0.043 and 0.117. These items used a more complex scenario involving movement of two ions. It may be that analytic coding is beneficial to unpacking this additional complexity.more » « less
-
Research has documented the presence of bias against women in hiring, including in academic science, technology, engineering, and mathematics (STEM). Hiring rubrics (also called criterion checklists, decision support tools, and evaluation tools) are widely recommended as a precise, cost-effective remedy to counteract hiring bias, despite a paucity of evidence that they actually work (see table S8). Our in-depth case study of rubric usage in faculty hiring in an academic engineering department in a very research-active university found that the rate of hiring women increased after the department deployed rubrics and used them to guide holistic discussions. Yet we also found evidence of substantial gender bias persisting in some rubric scoring categories and evaluators’ written comments. We do not recommend abandoning rubrics. Instead, we recommend a strategic and sociologically astute use of rubrics as a department self-study tool within the context of a holistic evaluation of semifinalist candidates.more » « less