skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Bayesian Generalized Kernel Inference for Terrain Traversability Mapping
We propose a new approach for traversability mapping with sparse lidar scans collected by ground vehicles, which leverages probabilistic inference to build descriptive terrain maps. Enabled by recent developments in sparse kernels, Bayesian generalized kernel inference is applied sequentially to the related problems of terrain elevation and traversability inference. The first inference step allows sparse data to support descriptive terrain modeling, and the second inference step relieves the burden typically associated with traversability computation. We explore the capabilities of the approach over a variety of data and terrain, demonstrating its suitability for online use in real-world applications.  more » « less
Award ID(s):
1723996
PAR ID:
10113014
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the 2nd Conference on Robot Learning
Page Range / eLocation ID:
829 - 838
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present a novel learning-based trajectory generation algorithm for outdoor robot navigation. Our goal is to compute collision-free paths that also satisfy the environment-specific traversability constraints. Our approach is designed for global planning using limited onboard robot perception in mapless environments while ensuring comprehensive coverage of all traversable directions. Our formulation uses a Conditional Variational Autoencoder (CVAE) generative model that is enhanced with traversability constraints and an optimization formulation used for the coverage. We highlight the benefits of our approach over state-of-the-art trajectory generation approaches and demonstrate its performance in challenging and large outdoor environments, including around buildings, across intersections, along trails, and off-road terrain, using a Clearpath Husky and a Boston Dynamics Spot robot. In practice, our approach results in a 6% improvement in coverage of traversable areas and an 89% reduction in trajectory portions residing in non-traversable regions. Our video is here: https://youtu.be/3eJ2soAzXnU 
    more » « less
  2. In this paper, we propose a novel approach for underwater simultaneous localization and mapping using a multibeam imaging sonar for 3D terrain mapping tasks. The high levels of noise and the absence of elevation angle information in sonar images present major challenges for data association and accurate 3D mapping. Instead of repeatedly projecting extracted features into Euclidean space, we apply optical flow within bearing-range images for tracking extracted features. To deal with degenerate cases, such as when tracking is interrupted by noise, we model the subsea terrain as a Gaussian Process random field on a Chow–Liu tree. Terrain factors are incorporated into the factor graph, aimed at smoothing the terrain elevation estimate. We demonstrate the performance of our proposed algorithm in a simulated environment, which shows that terrain factors effectively reduce estimation error. We also show ROV experiments performed in a variable-elevation tank environment, where we are able to construct a descriptive and smooth height estimate of the tank bottom. 
    more » « less
  3. Many differentially private algorithms for answering database queries involve a step that reconstructs a discrete data distribution from noisy measurements. This provides consistent query answers and reduces error, but often requires space that grows exponentially with dimension. Private-PGM is a recent approach that uses graphical models to represent the data distribution, with complexity proportional to that of exact marginal inference in a graphical model with structure determined by the co-occurrence of variables in the noisy measurements. Private-PGM is highly scalable for sparse measurements, but may fail to run in high dimensions with dense measurements. We overcome the main scalability limitation of Private-PGM through a principled approach that relaxes consistency constraints in the estimation objective. Our new approach works with many existing private query answering algorithms and improves scalability or accuracy with no privacy cost. 
    more » « less
  4. n this article, we present a novel and flexible multitask multilayer Bayesian mapping framework with readily extendable attribute layers. The proposed framework goes beyond modern metric-semantic maps to provide even richer environmental information for robots in a single mapping formalism while exploiting intralayer and interlayer correlations. It removes the need for a robot to access and process information from many separate maps when performing a complex task, advancing the way robots interact with their environments. To this end, we design a multitask deep neural network with attention mechanisms as our front-end to provide heterogeneous observations for multiple map layers simultaneously. Our back-end runs a scalable closed-form Bayesian inference with only logarithmic time complexity. We apply the framework to build a dense robotic map, including metric-semantic occupancy and traversability layers. Traversability ground truth labels are automatically generated from exteroceptive sensory data in a self-supervised manner. We present extensive experimental results on publicly available datasets and data collected by a three-dimensional bipedal robot platform and show reliable mapping performance in different environments. Finally, we also discuss how the current framework can be extended to incorporate more information, such as friction, signal strength, temperature, and physical quantity concentration using Gaussian map layers. The software for reproducing the presented results or running on customized data is made publicly available. 
    more » « less
  5. We present a multi-modal trajectory generation and selection algorithm for real-world mapless outdoor navigation in human-centered environments. Such environments contain rich features like crosswalks, grass, and curbs, which are easily interpretable by humans, but not by mobile robots. We aim to compute suitable trajectories that (1) satisfy the environment-specific traversability constraints and (2) generate human-like paths while navigating on crosswalks, sidewalks, etc. Our formulation uses a Conditional Variational Autoencoder (CVAE) generative model enhanced with traversability constraints to generate multiple candidate trajectories for global navigation. We develop a visual prompting approach and leverage the Visual Language Model's (VLM) zero-shot ability of semantic understanding and logical reasoning to choose the best trajectory given the contextual information about the task. We evaluate our method in various outdoor scenes with wheeled robots and compare the performance with other global navigation algorithms. In practice, we observe an average improvement of 20.81% in satisfying traversability constraints and 28.51% in terms of human-like navigation in four different outdoor navigation scenarios. 
    more » « less