skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Tunable Surface Acoustic Wave Device on Zinc Oxide via acoustoelectric interaction with AIGaN/GaN 2DEG
Surface acoustic wave devices have many applications in signal processing, radio frequency (RF) communications, and sensing [1]. The most common utilization of these devices is for filtering electromagnetic signals in communications systems. However, since the physical dimensions of the inter-digitated transducers (IDT) determine the frequency response, it is very difficult to attain tunable devices for programmable applications. Great effort has been made to achieve an integrated solution to this in III-V semiconductors. One such work utilizes the piezoelectric the GaN buffer layer in an AlGaN/GaN epi for acoustic propagation, while a metal-insulator-semiconductor (MIS) structure is used to tune the SAW response [2]. Unfortunately, the MIS structure results in a weak interaction only achieving a phase tunability of 0.07%. Recent work, uses thin film Zinc Oxide (ZnO) as a piezoelectric on top of n-type ZnO on GaN achieving a high tunability of. 9% [3]. In this work, we demonstrate a ZnO on AIGaN/GaN heterostructure capable of achieving high tunability as well as impacting properties of the SAW filter not previously reported.  more » « less
Award ID(s):
1641100
PAR ID:
10113068
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Device Research Conference 2019
Page Range / eLocation ID:
111 to 112
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Surface acoustic waves (SAWs) that propagate on the surface of a solid at MHz frequencies are widely used in sensing, communication, and acoustic tweezers. However, their properties are difficult to be tuned electrically, and current devices suffer from complicated configurations, complicated tuning mechanisms, or small ranges of tunability. Here a structure featuring a thin‐film transistor configuration is proposed to achieve electrically tunable SAW propagation based on conductivity tuning. When a DC gate voltage is applied, the on‐site conductivity of the piezoelectric substrate is modulated, which leads to velocity and amplitude tuning of SAWs. The use of carbon nanotubes and crystalline nanocellulose as the channel and gate materials results in high tuning capacity and low gate voltage requirement. The tunability is manifested by a 2.5% phase velocity tuning and near 10 dB on/off switching of the signals. The proposed device holds the potential for the next generation SAW‐based devices. 
    more » « less
  2. Microelectromechanical sensors (MEMS) offer a new way of measuring temperature and infrared (IR) radiation, through measurements of total optical energy, overcoming the obstacles associated with narrow bandgap semiconductor detectors[1]. Specifically, Thin Film Bulk Acoustic Resonators (FBAR) offers a versatile MEMS technology based on resonant devices fabricated using piezoelectric materials [2]. With the addition of an absorbing susceptor and the use of zinc oxide (ZnO) as the piezoelectric it is possible to obtain a higher sensitivity device than previously demonstrated systems, taking advantage of ZnO's higher temperature coefficient of frequency (TCF) [3,4,5]. This work studies the improved sensing ability of an FBAR structure and ease of testing and superior parasitic performance provided in a package using an engineered high TCF FBAR in a monolithically integrated CMOS process. 
    more » « less
  3. null (Ed.)
    Abstract Piezoelectric surface acoustic waves (SAWs) are powerful for investigating and controlling elementary and collective excitations in condensed matter. In semiconductor two-dimensional electron systems SAWs have been used to reveal the spatial and temporal structure of electronic states, produce quantized charge pumping, and transfer quantum information. In contrast to semiconductors, electrons trapped above the surface of superfluid helium form an ultra-high mobility, two-dimensional electron system home to strongly-interacting Coulomb liquid and solid states, which exhibit non-trivial spatial structure and temporal dynamics prime for SAW-based experiments. Here we report on the coupling of electrons on helium to an evanescent piezoelectric SAW. We demonstrate precision acoustoelectric transport of as little as ~0.01% of the electrons, opening the door to future quantized charge pumping experiments. We also show SAWs are a route to investigating the high-frequency dynamical response, and relaxational processes, of collective excitations of the electronic liquid and solid phases of electrons on helium. 
    more » « less
  4. null (Ed.)
    Using time-resolved magneto-optical Kerr effect (TR-MOKE) microscopy, we demonstrate surface-acoustic-wave (SAW) induced resonant amplification of intrinsic spin-wave (SW) modes, as well as generation of new extrinsic or driven modes at the SAW frequency, in a densely packed two-dimensional array of elliptical Co nanomagnets fabricated on a piezoelectric LiNbO 3 substrate. This system can efficiently serve as a magnonic crystal (MC), where the intrinsic shape anisotropy and the strong inter-element magnetostatic interaction trigger the incoherent precession of the nanomagnets' magnetization in the absence of any bias magnetic field, giving rise to the ‘intrinsic’ SW modes. The magnetoelastic coupling leads to a rich variety of SW phenomena when the SAW is launched along the major axis of the nanomagnets, such as 4–7 times amplification of intrinsic modes (at 3, 4, 7 and 10 GHz) when the applied SAW frequencies are resonant with these frequencies, and the generation of new extrinsic modes at non-resonant SAW frequencies. However, when the SAW is launched along the minor axis, a dominant driven mode appears at the applied SAW frequency. This reveals that the magnetoelastic coupling between SW and SAW is anisotropic in nature. Micromagnetic simulation results are in qualitative agreement with the experimental observations and elucidate the underlying dynamics. Our findings lay the groundwork for bias-field free magnonics, where the SW behavior is efficiently tuned by SAWs. It has important applications in the design of energy efficient on-chip microwave devices, SW logic, and extreme sub-wavelength ultra-miniaturized microwave antennas for embedded applications. 
    more » « less
  5. There is a growing interest in the exploration of the nitride material family for radically scaled, high frequency, ultrasonic devices by epitaxial growth techniques. Furthermore, the introduction of epitaxial growth techniques to conventional nitride‐based acoustic technology opens the door to exciting new families of structures for phonon confinement. As the need for higher frequency communications increases, both piezoelectrics and electrodes must scale to smaller dimensions. It has recently become possible to epitaxially grow single‐crystalline, wurtzite AlN/NbN piezoelectric/metal heterostructures. The epitaxial NbN films maintain high crystalline quality and electrical conductivity down to several nanometers thickness. This study demonstrates preliminary results on the feasibility of an all‐epitaxial bulk acoustic wave technology by growing and characterizing the radio frequency (RF) properties of an epitaxial AlN/NbN heterostructure. 
    more » « less