skip to main content


Title: FiberWire: Embedding Electronic Function into 3D Printed Mechanically Strong, Lightweight Carbon Fiber Composite Objects
Abstract: 3D printing offers significant potential in creating highly customized interactive and functional objects. However, at present ability to manufacture functional objects is limited by available materials (e.g., various polymers) and their process properties. For instance, many functional objects need stronger materials which may be satisfied with metal printers. However, to create wholly interactive devices, we need both conductors and insulators to create wiring, and electronic components to complete circuits. Unfortunately, the single material nature of metal printing, and its inherent high temperatures, preclude this. Thus, in 3D printed devices, we have had a choice of strong materials, or embedded interactivity, but not both. In this paper, we introduce a set of techniques we call FiberWire, which leverages a new commercially available capability to 3D print carbon fiber composite objects. These objects are light weight and mechanically strong, and our techniques demonstrate a means to embed circuitry for interactive devices within them. With FiberWire, we describe a fabrication pipeline takes advantage of laser etching and fiber printing between layers of carbon-fiber composite to form low resistance conductors, thereby enabling the fabrication of electronics directly embedded into mechanically strong objects. Utilizing the fabrication pipeline, we show a range of sensor designs, their performance characterization on these new materials and finally three fully printed example object that are both interactive and mechanically strong -- a bicycle handle bar with interactive controls, a swing and impact sensing golf club and an interactive game controller (Figure 1).  more » « less
Award ID(s):
1718651
NSF-PAR ID:
10113184
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems
Page Range / eLocation ID:
Paper 567
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. There has been an increasing need of technologies to manufacturing chemical and biological sensors for various applications ranging from environmental monitoring to human health monitoring. Currently, manufacturing of most chemical and biological sensors relies on a variety of standard microfabrication techniques, such as physical vapor deposition and photolithography, and materials such as metals and semiconductors. Though functional, they are hampered by high cost materials, rigid substrates, and limited surface area. Paper based sensors offer an intriguing alternative that is low cost, mechanically flexible, has the inherent ability to filter and separate analytes, and offers a high surface area, permeable framework advantageous to liquid and vapor sensing. However, a major drawback is that standard microfabrication techniques cannot be used in paper sensor fabrication. To fabricate sensors on paper, low temperature additive techniques must be used, which will require new manufacturing processes and advanced functional materials. In this work, we focus on using aerosol jet printing as a highresolution additive process for the deposition of ink materials to be used in paper-based sensors. This technique can use a wide variety of materials with different viscosities, including materials with high porosity and particles inherent to paper. One area of our efforts involves creating interdigitated microelectrodes on paper in a one-step process using commercially available silver nanoparticle and carbon black based conductive inks. Another area involves use of specialized filter papers as substrates, such as multi-layered fibrous membrane paper consisting of a poly(acrylonitrile) nanofibrous layer and a nonwoven poly(ethylene terephthalate) layer. The poly(acrylonitrile) nanofibrous layer are dense and smooth enough to allow for high resolution aerosol jet printing. With additively fabricated electrodes on the paper, molecularly-functionalized metal nanoparticles are deposited by molecularly-mediated assembling, drop casting, and printing (sensing and electrode materials), allowing full functionalization of the paper, and producing sensor devices with high surface area. These sensors, depending on the electrode configuration, are used for detection of chemical and biological species in vapor phase, such as water vapor and volatile organic compounds, making them applicable to human performance monitoring. These paper based sensors are shown to display an enhancement in sensitivity, as compared to control devices fabricated on non-porous polyimide substrates. These results have demonstrated the feasibility of paper-based printed devices towards manufacturing of a fully wearable, highly-sensitive, and wireless human performance monitor coupled to flexible electronics with the capability to communicate wirelessly to a smartphone or other electronics for data logging and analysis. 
    more » « less
  2. Abstract

    Fiber‐filled composite materials offer a unique pathway to enable new functionalities for systems built via extrusion‐based additive manufacturing (or “3D printing”); however, challenges remain in controlling the fiber orientations that govern ultimate performance. In this work, a multi‐material, shape‐changing nozzle—constructed by means of PolyJet 3D printing—is presented that allows for the spatial distribution of short fibers embedded in polymer matrices to be modulated on demand throughout extrusion‐based deposition processes. Specifically, the nozzle comprises flexible bladders that can be inflated pneumatically to alter the geometry of the material extrusion channel from a straight to a converging–diverging configuration, and in turn, the directional orientation of fibers within printed filaments. Experimental results for printing carbon microfiber‐hydrogel composites reveal that increasing the nozzle actuation pressure from 0 to 100 kPa reduced the proportion of aligned fibers, and notably, prompted a transition from anisotropic to isotropic water‐induced swelling properties (i.e., the ratio of transverse to longitudinal swelling strain decreased from 1.73 ± 0.37 to 0.93 ± 0.39, respectively). In addition, dynamically varying the nozzle geometry during the extrusion of continuous composite filaments effects distinct swelling behaviors in adjacent regions, suggesting potential utility of the presented approach for emerging “4D printing” applications.

     
    more » « less
  3. Recent advances in 3D printing have enabled the creation of novel 3D constructs and devices with an unprecedented level of complexity, properties, and functionalities. In contrast to manufacturing techniques developed for mass production, 3D printing encompasses a broad class of fabrication technologies that can enable 1) the creation of highly customized and optimized 3D physical architectures from digital designs; 2) the synergistic integration of properties and functionalities of distinct classes of materials to create novel hybrid devices; and 3) a biocompatible fabrication approach that facilitates the creation and co-integration of biological constructs and systems. Developing the ability to 3D print various classes of materials possessing distinct properties could enable the freeform generation of active electronics in unique functional, interwoven architectures. Here we are developing a multiscale 3D printing approach that enables the integration of diverse classes of materials to create a variety of 3D printed electronics and functional devices with active properties that are not easily achieved using standard microfabrication techniques. In one of the examples, we demonstrate an approach to prolong the gastric residence of wireless electronics to weeks via multimaterial three-dimensional design and fabrication. The surgical-free approach to integrate biomedical electronics with the human body can revolutionize telemedicine by enabling a real-time diagnosis and delivery of therapeutic agents. 
    more » « less
  4. Abstract

    3D printing, formally known as additive manufacturing, creates complex geometries via layer‐by‐layer addition of materials. While 3D printing has been historically perceived as the static addition of build layers, 3D printing is now considered as a dynamic assembly process. In this context, here a new 3D printing process is reported that executes full degree‐of‐freedom (DOF) transformation (translating, rotating, and scaling) of each individual building layer while utilizing continuous fabrication techniques. Transforming individual building layers within the sequential layered manufacturing process enables dynamic transformation of the 3D printed parts on‐the‐fly, eliminating the time‐consuming redesign steps. Preserving the locality of the transformation to each layer further enables the discrete conformal transformation, allowing objects such as vascular scaffolds to be optimally fabricated to properly fit within specific patient anatomy obtained from the magnetic resonance imaging (MRI) measurements. Finally, exploiting the freedom to control the orientation of each individual building layer, multimaterials, multiaxis 3D printing capability are further established for integrating functional modules made of dissimilar materials in 3D printed devices. This final capability is demonstrated through 3D printing a soft pneumatic gripper via heterogenous integration of rigid base and soft actuating limbs.

     
    more » « less
  5. New printing strategies have enabled 3D-printed materials that imitate traditional textiles. These filament-based textiles are easy to fabricate but lack the look and feel of fiber textiles. We seek to augment 3D-printed textiles with needlecraft to produce composite materials that integrate the programmability of additive fabrication with the richness of traditional textile craft. We present PunchPrint: a technique for integrating fiber and filament in a textile by combining punch needle embroidery and 3D printing. Using a toolpath that imitates textile weave structure, we print a flexible fabric that provides a substrate for punch needle production. We evaluate our material’s robustness through tensile strength and needle compatibility tests. We integrate our technique into a parametric design tool and produce functional artifacts that show how PunchPrint broadens punch needle craft by reducing labor in small, detailed artifacts, enabling the integration of openings and multiple yarn weights, and scaffolding soft 3D structures. 
    more » « less