Abstract: 3D printing offers significant potential in creating highly customized interactive and functional objects. However, at present ability to manufacture functional objects is limited by available materials (e.g., various polymers) and their process properties. For instance, many functional objects need stronger materials which may be satisfied with metal printers. However, to create wholly interactive devices, we need both conductors and insulators to create wiring, and electronic components to complete circuits. Unfortunately, the single material nature of metal printing, and its inherent high temperatures, preclude this. Thus, in 3D printed devices, we have had a choice of strong materials, or embedded interactivity, but not both. In this paper, we introduce a set of techniques we call FiberWire, which leverages a new commercially available capability to 3D print carbon fiber composite objects. These objects are light weight and mechanically strong, and our techniques demonstrate a means to embed circuitry for interactive devices within them. With FiberWire, we describe a fabrication pipeline takes advantage of laser etching and fiber printing between layers of carbon-fiber composite to form low resistance conductors, thereby enabling the fabrication of electronics directly embedded into mechanically strong objects. Utilizing the fabrication pipeline, we show a range of sensor designs, their performance characterization on these new materials and finally three fully printed example object that are both interactive and mechanically strong -- a bicycle handle bar with interactive controls, a swing and impact sensing golf club and an interactive game controller (Figure 1). 
                        more » 
                        « less   
                    
                            
                            3D printed electronic materials and devices.
                        
                    
    
            Abstract 3D printing of functional materials and devices is an emerging technology which may facilitate a higher degree of freedom in the fabrication of electronic devices in terms of material selection, 3D device form factor, morphology of target surfaces, and autonomy. This chapter discusses 3D printed electronics from the perspective of ink properties and device fabrication, including light-emitting diodes, tactile sensors and wireless powering. In combination with the progress in 3D structured light scanning, advances in computer vision, and commercial trends toward miniaturization, the prospect of autonomous, compact and portable 3D printers for electronic materials is discussed. Because the performance of 3D printed electronics is sensitively influenced by the homogeneity of printed layers, an understanding of fluid mechanics may enhance the quality of the printing and thus the performance of the resulting devices. Lastly, in order to create conformal contact between 3D printed electronics and the human body, an understanding of interfacial mechanics for 3D printed devices is suggested. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1420013
- PAR ID:
- 10310114
- Date Published:
- Journal Name:
- Woodhead Publishing reviews
- ISSN:
- 2048-0571
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Printed electronics is attracting a great deal of attention in both research and commercialization as it enables fabrication of large‐scale, low‐cost electronic devices on a variety of substrates. Printed electronics plays a critical role in facilitating widespread flexible electronics and more recently stretchable electronics. Conductive nanomaterials, such as metal nanoparticles and nanowires, carbon nanotubes, and graphene, are promising building blocks for printed electronics. Nanomaterial‐based printing technologies, formulation of printable inks, post‐printing treatment, and integration of functional devices have progressed substantially in the recent years. This review summarizes basic principles and recent development of common printing technologies, formulations of printable inks based on conductive nanomaterials, deposition of conductive inks via different printing techniques, and performance enhancement by using various sintering methods. While this review places emphasis on conductive nanomaterials, the printing techniques and ink formulations can be applied to other materials such as semiconducting and insulating nanomaterials. Moreover, some applications of printed flexible and stretchable electronic devices are reviewed to illustrate their potential. Finally, the future challenges and prospects for printing conductive nanomaterials are discussed.more » « less
- 
            Thermoelectric devices have great potential as a sustainable energy conversion technology to harvest waste heat and perform spot cooling with high reliability. However, most of the thermoelectric devices use toxic and expensive materials, which limits their application. These materials also require high-temperature fabrication processes, limiting their compatibility with flexible, bio-compatible substrate. Printing electronics is an exciting new technique for fabrication that has enabled a wide array of biocompatible and conformable systems. Being able to print thermoelectric devices allows them to be custom made with much lower cost for their specific application. Significant effort has been directed toward utilizing polymers and other bio-friendly materials for low-cost, lightweight, and flexible thermoelectric devices. Fortunately, many of these materials can be printed using low-temperature printing processes, enabling their fabrication on biocompatible substrates. This review aims to report the recent progress in developing high performance thermoelectric inks for various printing techniques. In addition to the usual thermoelectric performance measures, we also consider the attributes of flexibility and the processing temperatures. Finally, recent advancement of printed device structures is discussed which aims to maximize the temperature difference across the junctions.more » « less
- 
            Recent advances in 3D printing have enabled the creation of novel 3D constructs and devices with an unprecedented level of complexity, properties, and functionalities. In contrast to manufacturing techniques developed for mass production, 3D printing encompasses a broad class of fabrication technologies that can enable 1) the creation of highly customized and optimized 3D physical architectures from digital designs; 2) the synergistic integration of properties and functionalities of distinct classes of materials to create novel hybrid devices; and 3) a biocompatible fabrication approach that facilitates the creation and co-integration of biological constructs and systems. Developing the ability to 3D print various classes of materials possessing distinct properties could enable the freeform generation of active electronics in unique functional, interwoven architectures. Here we are developing a multiscale 3D printing approach that enables the integration of diverse classes of materials to create a variety of 3D printed electronics and functional devices with active properties that are not easily achieved using standard microfabrication techniques. In one of the examples, we demonstrate an approach to prolong the gastric residence of wireless electronics to weeks via multimaterial three-dimensional design and fabrication. The surgical-free approach to integrate biomedical electronics with the human body can revolutionize telemedicine by enabling a real-time diagnosis and delivery of therapeutic agents.more » « less
- 
            Abstract Charge‐programmed 3D printing enables the fabrication of 3D electronics with lightweight and high precision via selective patterning of metals. This selective metal deposition is catalyzed by Pd nanoparticles that are specifically immobilized onto the charged surface and promises to fabricate a myriad of complex electronic devices with self‐sensing, actuation, and structural elements assembled in a designed 3D layout. However, the achievable property space and the material‐performance correlation of the charge‐programmed printing remain unexplored. Herein, a series of photo‐curable resins are designed for unveiling how the charge and crosslink densities synergistically impact the nanocatalyst‐guided selective deposition in catalytic efficiency and properties of the 3D printed charge‐programmed architectures, leading to high‐quality 3D patterning of solid and liquid metals. The findings offer a wide tunability of the structural properties of the printed electronics, ranging from stiff to extreme flexibility. Capitalizing on these results, the printing and successful application of an ultralight‐weight and deployable 3D multi‐layer antenna system operating at an ultrahigh‐frequency of 19 GHz are demonstrated.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    