skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Experimental Evaluation of Teleoperation Interfaces for Cutting of Satellite Insulation
On-orbit servicing of satellites is complicated by the fact that almost all existing satellites were not designed to be serviced. This creates a number of challenges, one of which is to cut and partially remove the protective thermal blanketing that encases a satellite prior to performing the servicing operation. A human operator on Earth can perform this task telerobotically, but must overcome difficulties presented by the multi-second round-trip telemetry delay between the satellite and the operator and the limited, or even obstructed, views from the available cameras. This paper reports the results of ground-based experiments with trained NASA robot teleoperators to compare our recently-reported augmented virtuality visualization to the conventional camera-based visualization. We also compare the master console of a da Vinci surgical robot to the conventional teleoperation interface. The results show that, for the cutting task, the augmented virtuality visualization can improve operator performance compared to the conventional visualization, but that operators are more proficient with the conventional control interface than with the da Vinci master console.  more » « less
Award ID(s):
1637789
PAR ID:
10113189
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
IEEE International Conference on Robotics and Automation (ICRA)
Page Range / eLocation ID:
4775 to 4781
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present an open-source framework that provides a low barrier to entry for real-time simulation, visualization, and interactive manipulation of user-specifiable soft-bodies, environments, and robots (using a human-readable front-end interface). The simulated soft-bodies can be interacted by a variety of input interface devices including commercially available haptic devices, game controllers, and the Master Tele-Manipulators (MTMs) of the da Vinci Research Kit (dVRK) with real-time haptic feedback. We propose this framework for carrying out multi-user training, user-studies, and improving the control strategies for manipulation problems. In this paper, we present the associated challenges to the development of such a framework and our proposed solutions. We also demonstrate the performance of this framework with examples of soft-body manipulation and interaction with various input devices. 
    more » « less
  2. The emerging potential of augmented reality (AR) to improve 3D medical image visualization for diagnosis, by immersing the user into 3D morphology is further enhanced with the advent of wireless head-mounted displays (HMD). Such information-immersive capabilities may also enhance planning and visualization of interventional procedures. To this end, we introduce a computational platform to generate an augmented reality holographic scene that fuses pre-operative magnetic resonance imaging (MRI) sets, segmented anatomical structures, and an actuated model of an interventional robot for performing MRI-guided and robot-assisted interventions. The interface enables the operator to manipulate the presented images and rendered structures using voice and gestures, as well as to robot control. The software uses forbidden-region virtual fixtures that alerts the operator of collisions with vital structures. The platform was tested with a HoloLens HMD in silico. To address the limited computational power of the HMD, we deployed the platform on a desktop PC with two-way communication to the HMD. Operation studies demonstrated the functionality and underscored the importance of interface customization to fit a particular operator and/or procedure, as well as the need for on-site studies to assess its merit in the clinical realm. Index Terms—augmented reality, robot-assistance, imageguided interventions. 
    more » « less
  3. This paper describes a framework allowing intraoperative photoacoustic (PA) imaging integrated into minimally invasive surgical systems. PA is an emerging imaging modality that combines the high penetration of ultrasound (US) imaging with high optical contrast. With PA imaging, a surgical robot can provide intraoperative neurovascular guidance to the operating physician, alerting them of the presence of vital substrate anatomy invisible to the naked eye, preventing complications such as hemorrhage and paralysis. Our proposed framework is designed to work with the da Vinci surgical system: real-time PA images produced by the framework are superimposed on the endoscopic video feed with an augmented reality overlay, thus enabling intuitive three-dimensional localization of critical anatomy. To evaluate the accuracy of the proposed framework, we first conducted experimental studies in a phantom with known geometry, which revealed a volumetric reconstruction error of 1.20 ± 0.71 mm. We also conducted anex vivostudy by embedding blood-filled tubes into chicken breast, demonstrating the successful real-time PA-augmented vessel visualization onto the endoscopic view. These results suggest that the proposed framework could provide anatomical and functional feedback to surgeons and it has the potential to be incorporated into robot-assisted minimally invasive surgical procedures. 
    more » « less
  4. The emerging potential of augmented reality (AR) to improve 3D medical image visualization for diagnosis, by immersing the user into 3D morphology is further enhanced with the advent of wireless head-mounted displays (HMD). Such information-immersive capabilities may also enhance planning and visualization of interventional procedures. To this end, we introduce a computational platform to generate an augmented reality holographic scene that fuses pre-operative magnetic resonance imaging (MRI) sets, segmented anatomical structures, and an actuated model of an interventional robot for performing MRI-guided and robot-assisted interventions. The interface enables the operator to manipulate the presented images and rendered structures using voice and gestures, as well as to robot control. The software uses forbidden-region virtual fixtures that alerts the operator of collisions with vital structures. The platform was tested with a HoloLens HMD in silico. To address the limited computational power of the HMD, we deployed the platform on a desktop PC with two-way communication to the HMD. Operation studies demonstrated the functionality and underscored the importance of interface customization to fit a particular operator and/or procedure, as well as the need for on-site studies to assess its merit in the clinical realm. 
    more » « less
  5. null (Ed.)
    An important problem in designing human-robot systems is the integration of human intent and performance in the robotic control loop, especially in complex tasks. Bimanual coordination is a complex human behavior that is critical in many fine motor tasks, including robot-assisted surgery. To fully leverage the capabilities of the robot as an intelligent and assistive agent, online recognition of bimanual coordination could be important. Robotic assistance for a suturing task, for example, will be fundamentally different during phases when the suture is wrapped around the instrument (i.e., making a c- loop), than when the ends of the suture are pulled apart. In this study, we develop an online recognition method of bimanual coordination modes (i.e., the directions and symmetries of right and left hand movements) using geometric descriptors of hand motion. We (1) develop this framework based on ideal trajectories obtained during virtual 2D bimanual path following tasks performed by human subjects operating Geomagic Touch haptic devices, (2) test the offline recognition accuracy of bi- manual direction and symmetry from human subject movement trials, and (3) evalaute how the framework can be used to characterize 3D trajectories of the da Vinci Surgical System’s surgeon-side manipulators during bimanual surgical training tasks. In the human subject trials, our geometric bimanual movement classification accuracy was 92.3% for movement direction (i.e., hands moving together, parallel, or away) and 86.0% for symmetry (e.g., mirror or point symmetry). We also show that this approach can be used for online classification of different bimanual coordination modes during needle transfer, making a C loop, and suture pulling gestures on the da Vinci system, with results matching the expected modes. Finally, we discuss how these online estimates are sensitive to task environment factors and surgeon expertise, and thus inspire future work that could leverage adaptive control strategies to enhance user skill during robot-assisted surgery. 
    more » « less