skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: An Open-Source Framework for Rapid Development of Interactive Soft-Body Simulations for Real-Time Training
We present an open-source framework that provides a low barrier to entry for real-time simulation, visualization, and interactive manipulation of user-specifiable soft-bodies, environments, and robots (using a human-readable front-end interface). The simulated soft-bodies can be interacted by a variety of input interface devices including commercially available haptic devices, game controllers, and the Master Tele-Manipulators (MTMs) of the da Vinci Research Kit (dVRK) with real-time haptic feedback. We propose this framework for carrying out multi-user training, user-studies, and improving the control strategies for manipulation problems. In this paper, we present the associated challenges to the development of such a framework and our proposed solutions. We also demonstrate the performance of this framework with examples of soft-body manipulation and interaction with various input devices.  more » « less
Award ID(s):
1637759 1927275
PAR ID:
10356550
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
2020 IEEE International Conference on Robotics and Automation (ICRA)
Page Range / eLocation ID:
6544 to 6550
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Regular user interface screens can display dense and detailed information to human users but miss out on providing somatosensory stimuli that take full advantage of human spatial cognition. Therefore, the development of new haptic displays can strengthen human-machine communication by augmenting visual communication with tactile stimulation needed to transform information from digital to spatial/physical environments. Shape-changing interfaces, such as pin arrays and robotic surfaces, are one method for providing this spatial dimension of feedback; however, these displays are often either limited in maximum extension or require bulky mechanical components. In this paper, we present a compact pneumatically actuated soft growing pin for inflatable haptic interfaces. Each pin consists of a rigid, air-tight chamber, an inflatable fabric pin, and a passive spring-actuated reel mechanism. The device behavior was experimentally characterized, showing extension to 18.5 cm with relatively low pressure input (1.75 psi, 12.01 kPa), and the behavior was compared to the mathematical model of soft growing robots. The results showed that the extension of the soft pin can be accurately modeled and controlled using pressure as input. Finally, we demonstrate the feasibility of implementing individually actuated soft growing pins to create an inflatable haptic surface. 
    more » « less
  2. Abstract Since the modern concepts for virtual and augmented reality are first introduced in the 1960's, the field has strived to develop technologies for immersive user experience in a fully or partially virtual environment. Despite the great progress in visual and auditory technologies, haptics has seen much slower technological advances. The challenge is because skin has densely packed mechanoreceptors distributed over a very large area with complex topography; devising an apparatus as targeted as an audio speaker or television for the localized sensory input of an ear canal or iris is more difficult. Furthermore, the soft and sensitive nature of the skin makes it difficult to apply solid state electronic solutions that can address large areas without causing discomfort. The maturing field of soft robotics offers potential solutions toward this challenge. In this article, the definition and history of virtual (VR) and augmented reality (AR) is first reviewed. Then an overview of haptic output and input technologies is presented, opportunities for soft robotics are identified, and mechanisms of intrinsically soft actuators and sensors are introduced. Finally, soft haptic output and input devices are reviewed with categorization by device forms, and examples of soft haptic devices in VR/AR environments are presented. 
    more » « less
  3. Handheld kinesthetic haptic interfaces can provide greater mobility and richer tactile information as compared to traditional grounded devices. In this paper, we introduce a new handheld haptic interface which takes input using bidirectional coupled finger flexion. We present the device design motivation and design details and experimentally evaluate its performance in terms of transparency and rendering bandwidth using a handheld prototype device. In addition, we assess the device's functional performance through a user study comparing the proposed device to a commonly used grounded input device in a set of targeting and tracking tasks. 
    more » « less
  4. We describe a novel haptic interface designed specifically for the teleoperation of extensible continuum manipulators. The proposed device is based off of, and extends to the haptic domain, a kinematically similar input device for continuum manipulators called the MiniOct. This letter describes the physical design of the new device, the method of creating impedance-type haptic feedback to users, and some of the requirements for implementing this device in a bilateral teleoperation scheme for continuum robots. We report a series of initial experiments to validate the operation of the system, including simulated and real-time conditions. The experimental results show that a user can identify the direction of planar obstacles from the feedback for both virtual and physical environments. Finally, we discuss the challenges for providing feedback to an operator about the state of a teleoperated continuum manipulator. 
    more » « less
  5. null (Ed.)
    Surgical robots for laparoscopy consist of several patient side slave manipulators that are controlled via surgeon operated master telemanipulators. Commercial surgical robots do not perform any sub-tasks - even of repetitive or noninvasive nature - autonomously or provide intelligent assistance. While this is primarily due to safety and regulatory reasons, the state of such automation intelligence also lacks the reliability and robustness for use in high-risk applications. Recent developments in continuous control using Artificial Intelligence and Reinforcement Learning have prompted growing research interest in automating mundane sub-tasks. To build on this, we present an inspired Asynchronous Framework which incorporates realtime dynamic simulation - manipulable with the masters of a surgical robot and various other input devices - and interfaces with learning agents to train and potentially allow for the execution of shared sub-tasks. The scope of this framework is generic to cater to various surgical (as well as non-surgical) training and control applications. This scope is demonstrated by examples of multi-user and multi-manual applications which allow for realistic interactions by incorporating distributed control, shared task allocation and a well-defined communication pipe-line for learning agents. These examples are discussed in conjunction with the design philosophy, specifications, system-architecture and metrics of the Asynchronous Framework and the accompanying Simulator. We show the stability of Simulator while achieving real-time dynamic simulation and interfacing with several haptic input devices and a training agent at the same time. 
    more » « less