skip to main content


Title: Ray Tracing Simulations in Millimeter-Wave Vehicular Communications
Autonomous vehicles are equipped with multiple high-resolution sensors and cameras for an accurate local view of their surroundings. Equally important, they will need to exchange such high data-rate among each other for a wider view of their environments. The use of high-bandwidth millimeter-wave (mmWave) spectrum bands in vehicular communications can satisfy such demand for high data-rate exchange. Before attempting to design any mmWave vehicular communication system, there is a need to fully understand the propagation characteristics of such mmWave mobile environment. In this paper, we leverage the ray tracing capabilities in the WinProp software suite and study the propagation characteristics of mmWave channels in vehicular communications. In doing so, we present the implementation of the Vehicle-to-Infrastructure (V2I) communication scenario in WinProp. Via simulation results, we are able to show that approximately 20 dB degradation of signal strength can happen within 5 seconds.  more » « less
Award ID(s):
1816112
NSF-PAR ID:
10113263
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
IEEE 30th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Vehicles are becoming more intelligent and automated. To achieve higher automation levels, vehicles are being equipped with more and more sensors. High data rate connectivity seems critical to allow vehicles and road infrastructure exchanging all these sensor data to enlarge their sensing range and make better safety related decisions. Connectivity also enables other applications such as infotainment or high levels of traffic coordination. Current solutions for vehicular communications though do not support the gigabit-per-second data rates. This presentation makes the case that millimeter wave communication is the only viable approach for high bandwidth connected vehicles. The motivation and challenges associated with using mmWave for vehicle-to-vehicle and vehicle-to-infrastructure applications are highlighted. Examples from recent work are provided including new theoretical results that enable mmWave communication in high mobility scenarios and innovative architectural concepts like position and radar-aided communication. 
    more » « less
  2. This paper characterizes the impact of interference on vehicular communications employing beamforming links between transmitters and receivers operating within a multipath propagation environment. Different road scenarios, such as an intersection and a roundabout are considered to determine the performance characteristics of the vehicle communication link. By employing the results for different antenna array elements and by varying distance, we analyse the bit error rate (BER) of vehicles operating in multipath propagation environments with an interferer within the vicinity of an communication link. 
    more » « less
  3. The extremely high data rates provided by communications in the millimeter-length (mmWave) frequency bands can help address the unprecedented demands of next-generation wireless communications. However, atmospheric attenuation and high propagation loss severely limit the coverage of mmWave networks. To overcome these challenges, multi-input-multi-output (MIMO) provides beamforming capabilities and high-gain steer- able antennas to expand communication coverage at mmWave frequencies. The main contribution of this paper is the per- formance evaluation of mmWave communications on top of the recently released NR standard for 5G cellular networks. Furthermore, we compare the performance of NR with the 4G long-term evolution (LTE) standard on a highly realistic campus environment. We consider physical layer constraints such as transmit power, ambient noise, receiver noise figure, and practical antenna gain in both cases, and examine bitrate and area coverage as the criteria to benchmark the performance. We also show the impact of MIMO technology to improve the performance of the 5G NR cellular network. Our evaluation demonstrates that 5G NR provides on average 6.7 times bitrate improvement without remarkable coverage degradation. 
    more » « less
  4. Self-driving vehicles will need low-latency and high-capacity vehicular communication for acquiring wider view of their surroundings. Such vehicle-to-vehicle communication can be indirectly supported in some circumstances (e.g., if blocked) through adjacent road side units (RSUs). RSUs will be acting as full-duplex repeaters among the vehicles to ensure low latency and high data rate. However, full-duplex repeaters result in self-interference phenomenon which can degrade the reliability of the communication links. In this work, we aim to enhance the reliability of full-duplex repeaters by canceling out the self-interference impact, and applying a beamforming scheme that is matched to the source-destination composite channel. We show that the proposed self-interference cancellation and beamforming (SICAB) algorithm significantly reduces the error rate for low-isolated repeaters. Finally, we illustrate the impact of the repeater isolation capability on the performance of the proposed SICAB algorithm. 
    more » « less
  5. The potential of the millimeter wave (mmWave) band in meeting the ever growing demand for high data rate and capacity in emerging fifth-generation (5G) wireless networks is well-established. Since mmWave systems are expected to use highly directional antennas with very focused beams to overcome severe pathloss and shadowing in this band, the nature of signal propagation in mmWave wireless networks may differ from current networks. One factor that is influenced by such propagation characteristics is the interference behavior, which is also impacted by the simultaneous use of the unlicensed portion of the spectrum by multiple users. Therefore, considering the propagation characteristics in the mmWave band, we propose a spatial-spectral interference model for 5G mmWave applications, in the presence of Poisson field of blockages and interferers operating in licensed and unlicensed mmWave spectrum. Consequently, the average bit error rate of the network is calculated. Simulation is also carried out to verify the outcomes of the paper. 
    more » « less