skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: GreenDataFlow: Minimizing the Energy Footprint of Global Data Movement
The global data movement over Internet has an estimated energy footprint of 100 terawatt hours per year, costing the world economy billions of dollars. The networking infrastructure together with source and destination nodes involved in the data transfer contribute to overall energy consumption. Although considerable amount of research has rendered power management techniques for the networking infrastructure, there has not been much prior work focusing on energy-aware data transfer solutions for minimizing the power consumed at the end-systems. In this paper, we introduce a novel application-layer solution based on historical analysis and real-time tuning called GreenDataFlow, which aims to achieve high data transfer throughput while keeping the energy consumption at the minimal levels. GreenDataFlow supports service level agreements (SLAs) which give the service providers and the consumers the ability to fine tune their goals and priorities in this optimization process. Our experimental results show that GreenDataFlow outperforms the closest competing state-of-the art solution in this area 50% for energy saving and 2.5× for the achieved end-to-end performance.  more » « less
Award ID(s):
1724898 1842054
PAR ID:
10113312
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
2018 IEEE International Conference on Big Data (Big Data)
Page Range / eLocation ID:
335 to 342
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. With the proliferation of data movement across the Internet, global data traffic per year has already exceeded the Zettabyte scale. The network infrastructure and end-systems facilitating the vast data movement consume an extensive amount of electricity, measured in terawatt-hours per year. This massive energy footprint costs the world economy billions of dollars partially due to energy consumed at the network end-systems. Although extensive research has been done on managing power consumption within the core networking infrastructure, there is little research on reducing the power consumption at the end-systems during active data transfers. This paper presents a novel cross-layer optimization framework, called Cross-LayerHLA, to minimize energy consumption at the end-systems by applying machine learning techniques to historical transfer logs and extracting the hidden relationships between different parameters affecting both the performance and resource utilization. It utilizes offline analysis to improve online learning and dynamic tuning of application-level and kernel-level parameters with minimal overhead. This approach minimizes end-system energy consumption and maximizes data transfer throughput. Our experimental results show that Cross-LayerHLA outperforms other state-of-the-art solutions in this area. 
    more » « less
  2. With the emergence of data deluge, the energy footprint of global data movement has surpassed 100 terawatt hours, costing more than 20 billion US dollars to the world economy. During an active data transfer, depending on the number of hops between the source and destination, the networking infrastructure consumes between 10% - 75% of the total energy, and the rest is consumed by the end systems. Even though there has been extensive research on reducing the power consumption at the networking infrastructure, the work focusing on saving energy at the end systems has been limited to the tuning of a few application-level parameters. In this paper, we introduce a novel cross-layer optimization framework which jointly considers application-level and kernel-level parameters to minimize the energy consumption without sacrificing from the transfer throughput. We present three different algorithms which can dynamically tune the CPU frequency level, number of active CPU cores, number of active transfer threads, number of parallel TCP streams, and the level of transfer command pipelining to achieve different user-set goals. Experimental results show that our proposed algorithms outperform the state-of-the-art solutions, achieving up to 80% higher throughput while consuming 48% less energy. 
    more » « less
  3. The increase and rapid growth of data produced by scientific instruments, the Internet of Things (IoT), and social media is causing data transfer performance and resource consumption to garner much attention in the research community. The network infrastructure and end systems that enable this extensive data movement use a substantial amount of electricity, measured in terawatt-hours per year. Managing energy consumption within the core networking infrastructure is an active research area, but there is a limited amount of work on reducing power consumption at the end systems during active data transfers. This paper presents a novel two-phase dynamic throughput and energy optimization model that utilizes an offline decision-search-tree based clustering technique to encapsulate and categorize historical data transfer log information and an online search optimization algorithm to find the best application and kernel layer parameter combination to maximize the achieved data transfer throughput while minimizing the energy consumption. Our model also incorporates an ensemble method to reduce aleatoric uncertainty in finding optimal application and kernel layer parameters during the offline analysis phase. The experimental evaluation results show that our decision-tree based model outperforms the state-of-the-art solutions in this area by achieving 117% higher throughput on average and also consuming 19% less energy at the end systems during active data transfers. 
    more » « less
  4. Cloud visualization and multi-tenant networking provide Infrastructure as a Service (IaaS) provider a new and innovative way to offer the on-demand services to their customers, such as the easy provisioning of new applications and the better resource efficiency and scalability. However, existing data-intensive applications require more powerful processor and computing power, as well as a high bandwidth, low latency and consistent networking service. In order to boost the performance of computing and networking services, as well as reduce the overhead of the software virtualization, we propose a new data center network design based on OpenStack, which is a promising cloud operating system solution. Specifically, we map the OpenStack networking services to the hardware switch, and perform hardware-accelerated L2 switch and L3 routing to solve the software limitations, as well as achieve the software-like scalability and flexibility. We designed our prototype system via the Arista Software-Defined-Networking (SDN) switch, and evaluated the performance improvement in terms of the bandwidth and delay using various tools. Our experimental results demonstrate that our datacenter networking solution achieves higher bandwidth, lower latency, and lower CPU utilization of the host server. 
    more » « less
  5. Battery-powered computing solutions have grown in importance and utility across a wide range of applications in the technology industry, including both consumer and industrial uses. Devices that are not attached to a stable and constant power source must ensure that all power consumption is minimized while necessary computation and communications are performed. WiFi networking is ubiquitous in modern devices, and thus the power consumption necessary to transmit data is of utmost concern for these battery powered devices. The Ad hoc OnDemand Distance Vector (AODV) routing algorithm is a widely adopted and adapted routing system for path finding in wireless networks. AODV’s original implementation did not include power consumption as a consideration for route determinations. The Energy Aware AODV (EA-AODV) algorithm was an attempt to account for energy conservation by varying broadcast power and choosing paths with distance between nodes as a consideration in routing. Lightning Strike AODV (LS-AODV) described in this paper is a proposed routing algorithm that further accounts for energy consumption in wireless networking by balancing energy in a network. Quality of service is maintained while energy levels are increased through networks using the LS-AODV algorithm. 
    more » « less