skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Energy-saving Cross-layer Optimization of Big Data Transfer Based on Historical Log Analysis
With the proliferation of data movement across the Internet, global data traffic per year has already exceeded the Zettabyte scale. The network infrastructure and end-systems facilitating the vast data movement consume an extensive amount of electricity, measured in terawatt-hours per year. This massive energy footprint costs the world economy billions of dollars partially due to energy consumed at the network end-systems. Although extensive research has been done on managing power consumption within the core networking infrastructure, there is little research on reducing the power consumption at the end-systems during active data transfers. This paper presents a novel cross-layer optimization framework, called Cross-LayerHLA, to minimize energy consumption at the end-systems by applying machine learning techniques to historical transfer logs and extracting the hidden relationships between different parameters affecting both the performance and resource utilization. It utilizes offline analysis to improve online learning and dynamic tuning of application-level and kernel-level parameters with minimal overhead. This approach minimizes end-system energy consumption and maximizes data transfer throughput. Our experimental results show that Cross-LayerHLA outperforms other state-of-the-art solutions in this area.  more » « less
Award ID(s):
1842054 1724898 2007829
PAR ID:
10389430
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
ICC 2021 - IEEE International Conference on Communications
Page Range / eLocation ID:
1 to 7
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The increase and rapid growth of data produced by scientific instruments, the Internet of Things (IoT), and social media is causing data transfer performance and resource consumption to garner much attention in the research community. The network infrastructure and end systems that enable this extensive data movement use a substantial amount of electricity, measured in terawatt-hours per year. Managing energy consumption within the core networking infrastructure is an active research area, but there is a limited amount of work on reducing power consumption at the end systems during active data transfers. This paper presents a novel two-phase dynamic throughput and energy optimization model that utilizes an offline decision-search-tree based clustering technique to encapsulate and categorize historical data transfer log information and an online search optimization algorithm to find the best application and kernel layer parameter combination to maximize the achieved data transfer throughput while minimizing the energy consumption. Our model also incorporates an ensemble method to reduce aleatoric uncertainty in finding optimal application and kernel layer parameters during the offline analysis phase. The experimental evaluation results show that our decision-tree based model outperforms the state-of-the-art solutions in this area by achieving 117% higher throughput on average and also consuming 19% less energy at the end systems during active data transfers. 
    more » « less
  2. With the emergence of data deluge, the energy footprint of global data movement has surpassed 100 terawatt hours, costing more than 20 billion US dollars to the world economy. During an active data transfer, depending on the number of hops between the source and destination, the networking infrastructure consumes between 10% - 75% of the total energy, and the rest is consumed by the end systems. Even though there has been extensive research on reducing the power consumption at the networking infrastructure, the work focusing on saving energy at the end systems has been limited to the tuning of a few application-level parameters. In this paper, we introduce a novel cross-layer optimization framework which jointly considers application-level and kernel-level parameters to minimize the energy consumption without sacrificing from the transfer throughput. We present three different algorithms which can dynamically tune the CPU frequency level, number of active CPU cores, number of active transfer threads, number of parallel TCP streams, and the level of transfer command pipelining to achieve different user-set goals. Experimental results show that our proposed algorithms outperform the state-of-the-art solutions, achieving up to 80% higher throughput while consuming 48% less energy. 
    more » « less
  3. The global data movement over Internet has an estimated energy footprint of 100 terawatt hours per year, costing the world economy billions of dollars. The networking infrastructure together with source and destination nodes involved in the data transfer contribute to overall energy consumption. Although considerable amount of research has rendered power management techniques for the networking infrastructure, there has not been much prior work focusing on energy-aware data transfer solutions for minimizing the power consumed at the end-systems. In this paper, we introduce a novel application-layer solution based on historical analysis and real-time tuning called GreenDataFlow, which aims to achieve high data transfer throughput while keeping the energy consumption at the minimal levels. GreenDataFlow supports service level agreements (SLAs) which give the service providers and the consumers the ability to fine tune their goals and priorities in this optimization process. Our experimental results show that GreenDataFlow outperforms the closest competing state-of-the art solution in this area 50% for energy saving and 2.5× for the achieved end-to-end performance. 
    more » « less
  4. Mobile data traffic will exceed PC Internet traffic by 2020. As the number of smartphone users and the amount of data transferred per smartphone grow exponentially, limited battery power is becoming an increasingly critical problem for mobile devices which depend on the network I/O. Despite the growing body of research in power management techniques for the mobile devices at the hardware layer as well as the lower layers of the networking stack, there has been little work focusing on saving energy at the application layer for the mobile systems during network I/O. In this paper, we propose a novel technique, called FastHLA, that can achieve significant energy savings at the application layer during mobile network I/O without sacrificing the performance. FastHLA is based on historical log analysis and real-time dynamic tuning of mobile data transfers to achieve the optimization goal. FastHLA can increase the data transfer throughout by up to 10X and decrease the energy consumption by up to 5X compared to state-of-the-art HTTP/2.0 transfers. 
    more » « less
  5. With the advent of 5G, supporting high-quality game streaming applications on edge devices has become a reality. This is evidenced by a recent surge in cloud gaming applications on mobile devices. In contrast to video streaming applications, interactive games require much more compute power for supporting improved rendering (such as 4K streaming) with the stipulated frames-per second (FPS) constraints. This in turn consumes more battery power in a power-constrained mobile device. Thus, the state-of-the-art gaming applications suffer from lower video quality (QoS) and/or energy efficiency. While there has been a plethora of recent works on optimizing game streaming applications, to our knowledge, there is no study that systematically investigates the design pairs on the end-to-end game streaming pipeline across the cloud, network, and edge devices to understand the individual contributions of the different stages of the pipeline for improving the overall QoS and energy efficiency. In this context, this paper presents a comprehensive performance and power analysis of the entire game streaming pipeline consisting of the server/cloud side, network, and edge. Through extensive measurements with a high-end workstation mimicking the cloud end, an open-source platform (Moonlight-GameStreaming) emulating the edge device/mobile platform, and two network settings (WiFi and 5G) we conduct a detailed measurement-based study with seven representative games with different characteristics. We characterize the performance in terms of frame latency, QoS, bitrate, and energy consumption for different stages of the gaming pipeline. Our study shows that the rendering stage and the encoding stage at the cloud end are the bottlenecks to support 4K streaming. While 5G is certainly more suitable for supporting enhanced video quality with 4K streaming, it is more expensive in terms of power consumption compared to WiFi. Further, fluctuations in 5G network quality can lead to huge frame drops thus affecting QoS, which needs to be addressed by a coordinated design between the edge device and the server. Finally, the network interface and the decoder units in a mobile platform need more energy-efficient design to support high quality games at a lower cost. These observations should help in designing more cost-effective future cloud gaming platforms. 
    more » « less