skip to main content


Title: AlertnessScanner: what do your pupils tell about your alertness
Alertness is a crucial component of our cognitive performance. Reduced alertness can negatively impact memory consolidation, productivity and safety. As a result, there has been an increasing focus on continuous assessment of alertness. The existing methods usually require users to wear sensors, fill out questionnaires, or perform response time tests periodically, in order to track their alertness. These methods may be obtrusvie to some users, and thus have limited capability. In this work, we propose AlertnessScanner, a computer-vision-based system that collects in-situ pupil information to model alertness in the wild. We conducted two in-the-wild studies to evaluate the effectiveness of our solution, and found that AlertnessScanner passively and unobtrusively assess alertness. We discuss the implications of our findings and present opportunities for mobile applications that measure and act upon changes in alertness.  more » « less
Award ID(s):
1840025
NSF-PAR ID:
10113342
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
MobileHCI '18 Proceedings of the 20th International Conference on Human-Computer Interaction with Mobile Devices and Services
Page Range / eLocation ID:
1 to 11
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Background With nearly 20% of the US adult population using fitness trackers, there is an increasing focus on how physiological data from these devices can provide actionable insights about workplace performance. However, in-the-wild studies that understand how these metrics correlate with cognitive performance measures across a diverse population are lacking, and claims made by device manufacturers are vague. While there has been extensive research leading to a variety of theories on how physiological measures affect cognitive performance, virtually all such studies have been conducted in highly controlled settings and their validity in the real world is poorly understood. Objective We seek to bridge this gap by evaluating prevailing theories on the effects of a variety of sleep, activity, and heart rate parameters on cognitive performance against data collected in real-world settings. Methods We used a Fitbit Charge 3 and a smartphone app to collect different physiological and neurobehavioral task data, respectively, as part of our 6-week-long in-the-wild study. We collected data from 24 participants across multiple population groups (shift workers, regular workers, and graduate students) on different performance measures (vigilant attention and cognitive throughput). Simultaneously, we used a fitness tracker to unobtrusively obtain physiological measures that could influence these performance measures, including over 900 nights of sleep and over 1 million minutes of heart rate and physical activity metrics. We performed a repeated measures correlation (rrm) analysis to investigate which sleep and physiological markers show association with each performance measure. We also report how our findings relate to existing theories and previous observations from controlled studies. Results Daytime alertness was found to be significantly correlated with total sleep duration on the previous night (rrm=0.17, P<.001) as well as the duration of rapid eye movement (rrm=0.12, P<.001) and light sleep (rrm=0.15, P<.001). Cognitive throughput, by contrast, was not found to be significantly correlated with sleep duration but with sleep timing—a circadian phase shift toward a later sleep time corresponded with lower cognitive throughput on the following day (rrm=–0.13, P<.001). Both measures show circadian variations, but only alertness showed a decline (rrm=–0.1, P<.001) as a result of homeostatic pressure. Both heart rate and physical activity correlate positively with alertness as well as cognitive throughput. Conclusions Our findings reveal that there are significant differences in terms of which sleep-related physiological metrics influence each of the 2 performance measures. This makes the case for more targeted in-the-wild studies investigating how physiological measures from self-tracking data influence, or can be used to predict, specific aspects of cognitive performance. 
    more » « less
  2. We conduct the first systematic study of the effectiveness of Web Audio API-based browser fingerprinting mechanisms and present new insights. First, we show that audio fingerprinting vectors, unlike other prior vectors, reveal an apparent fickleness with some users' browsers giving away differing fingerprints in repeated attempts. However, we show that it is possible to devise a graph-based analysis mechanism to collectively consider all the different fingerprints left by users' browsers and thus craft a highly stable fingerprinting mechanism. Next, we investigate the diversity of audio fingerprints and compare this with prior fingerprinting techniques. Our results show that audio fingerprints are much less diverse than other vectors with only 95 distinct fingerprints among 2093 users. At the same time, further analysis shows that web audio fingerprinting can potentially bring considerable additive value to existing fingerprinting mechanisms. For instance, our results show that the addition of web audio fingerprinting causes a 9.6\% increase in entropy when compared to using Canvas fingerprinting alone. We also show that our results contradict the current security and privacy recommendations provided by W3C regarding audio fingerprinting. 
    more » « less
  3. Social media platforms curate access to information and opportunities, and so play a critical role in shaping public discourse today. The opaque nature of the algorithms these platforms use to curate content raises societal questions. Prior studies have used black-box methods led by experts or collaborative audits driven by everyday users to show that these algorithms can lead to biased or discriminatory outcomes. However, existing auditing methods face fundamental limitations because they function independent of the platforms. Concerns of potential harmful outcomes have prompted proposal of legislation in both the U.S. and the E.U. to mandate a new form of auditing where vetted external researchers get privileged access to social media platforms. Unfortunately, to date there have been no concrete technical proposals to provide such auditing, because auditing at scale risks disclosure of users' private data and platforms' proprietary algorithms. We propose a new method for platform-supported auditing that can meet the goals of the proposed legislation. The first contribution of our work is to enumerate the challenges and the limitations of existing auditing methods to implement these policies at scale. Second, we suggest that limited, privileged access to relevance estimators is the key to enabling generalizable platform-supported auditing of social media platforms by external researchers. Third, we show platform-supported auditing need not risk user privacy nor disclosure of platforms' business interests by proposing an auditing framework that protects against these risks. For a particular fairness metric, we show that ensuring privacy imposes only a small constant factor increase (6.34x as an upper bound, and 4× for typical parameters) in the number of samples required for accurate auditing. Our technical contributions, combined with ongoing legal and policy efforts, can enable public oversight into how social media platforms affect individuals and society by moving past the privacy-vs-transparency hurdle. 
    more » « less
  4. The transparency and privacy behavior of mobile browsers has remained widely unexplored by the research community. In fact, as opposed to regular Android apps, mobile browsers may present contradicting privacy behaviors. On the one end, they can have access to (and can expose) a unique combination of sensitive user data, from users’ browsing history to permission-protected personally identifiable information (PII) such as unique identifiers and geolocation. However, on the other end, they also are in a unique position to protect users’ privacy by limiting data sharing with other parties by implementing ad-blocking features. In this paper, we perform a comparative and empirical analysis on how hundreds of Android web browsers protect or expose user data during browsing sessions. To this end, we collect the largest dataset of Android browsers to date, from the Google Play Store and four Chinese app stores. Then, we developed a novel analysis pipeline that combines static and dynamic analysis methods to find a wide range of privacy-enhancing (e.g., ad-blocking) and privacy-harming behaviors (e.g., sending browsing histories to third parties, not validating TLS certificates, and exposing PII---including non-resettable identifiers---to third parties) across browsers. We find that various popular apps on both Google Play and Chinese stores have these privacy-harming behaviors, including apps that claim to be privacy-enhancing in their descriptions. Overall, our study not only provides new insights into important yet overlooked considerations for browsers’ adoption and transparency, but also that automatic app analysis systems (e.g., sandboxes) need context-specific analysis to reveal such privacy behaviors. 
    more » « less
  5. There is a growing need for next-generation science gateways to increase the accessibility of data sets and cloud computing resources using latest technologies. Most science gateways today are built for specific purposes with pre-defined workflows, user interfaces, and fixed computing resources. There is a need to modernize them with middleware that can provide ‘plug in’ support to programmatically increase their extensibility and scalability to meet users’ growing needs. In this paper, we propose a novel middleware that can be integrated into science gate ways using a “bring-your-own” plug-in management approach. This approach features microservice architectures to decouple applications, and allows users (i.e., administrators, developers, researchers) to customize and incorporate domain-specific components in an existing science gateway. We detail the application programming interfaces in our middleware for creation of end-to end pipelines with diverse infrastructure, customized processes, detailed monitoring and flexible programmability for a scientific domain. We also demonstrate via a OnTimeRecommend case study on how our “bring-your-own” approach can be seamlessly integrated by a science gateway administrator/developer using a web application. 
    more » « less