Voluntary sharing of personal information is at the heart of user engagement on social media and central to platforms' business models. From the users' perspective, so-called self-disclosure is closely connected with both privacy risks and social rewards. Prior work has studied contextual influences on self-disclosure, from platform affordances and interface design to user demographics and perceived social capital. Our work takes a mixed-methods approach to understand the contextual information which might be integrated in the development of privacy-enhancing technologies. Through observational study of several Reddit communities, we explore the ways in which topic of discussion, group norms, peer effects, and audience size are correlated with personal information sharing. We then build and test a prototype privacy-enhancing tool that exposes these contextual factors. Our work culminates in a browser extension that automatically detects instances of self-disclosure in Reddit posts at the time of posting and provides additional context to users before they post to support enhanced privacy decision-making. We share this prototype with social media users, solicit their feedback, and outline a path forward for privacy-enhancing technologies in this space. 
                        more » 
                        « less   
                    
                            
                            Having your Privacy Cake and Eating it Too: Platform-supported Auditing of Social Media Algorithms for Public Interest
                        
                    
    
            Social media platforms curate access to information and opportunities, and so play a critical role in shaping public discourse today. The opaque nature of the algorithms these platforms use to curate content raises societal questions. Prior studies have used black-box methods led by experts or collaborative audits driven by everyday users to show that these algorithms can lead to biased or discriminatory outcomes. However, existing auditing methods face fundamental limitations because they function independent of the platforms. Concerns of potential harmful outcomes have prompted proposal of legislation in both the U.S. and the E.U. to mandate a new form of auditing where vetted external researchers get privileged access to social media platforms. Unfortunately, to date there have been no concrete technical proposals to provide such auditing, because auditing at scale risks disclosure of users' private data and platforms' proprietary algorithms. We propose a new method for platform-supported auditing that can meet the goals of the proposed legislation. The first contribution of our work is to enumerate the challenges and the limitations of existing auditing methods to implement these policies at scale. Second, we suggest that limited, privileged access to relevance estimators is the key to enabling generalizable platform-supported auditing of social media platforms by external researchers. Third, we show platform-supported auditing need not risk user privacy nor disclosure of platforms' business interests by proposing an auditing framework that protects against these risks. For a particular fairness metric, we show that ensuring privacy imposes only a small constant factor increase (6.34x as an upper bound, and 4× for typical parameters) in the number of samples required for accurate auditing. Our technical contributions, combined with ongoing legal and policy efforts, can enable public oversight into how social media platforms affect individuals and society by moving past the privacy-vs-transparency hurdle. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10426975
- Date Published:
- Journal Name:
- Proceedings of the ACM on Human-Computer Interaction
- Volume:
- 7
- Issue:
- CSCW1
- ISSN:
- 2573-0142
- Page Range / eLocation ID:
- 1 to 33
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            The concern regarding users’ data privacy has risen to its highest level due to the massive increase in communication platforms, social networking sites, and greater users’ participation in online public discourse. An increasing number of people exchange private information via emails, text messages, and social media without being aware of the risks and implications. Researchers in the field of Natural Language Processing (NLP) have concentrated on creating tools and strategies to identify, categorize, and sanitize private information in text data since a substantial amount of data is exchanged in textual form. However, most of the detection methods solely rely on the existence of pre-identified keywords in the text and disregard the inference of underlying meaning of the utterance in a specific context. Hence, in some situations these tools and algorithms fail to detect disclosure, or the produced results are miss classified. In this paper, we propose a multi-input, multi-output hybrid neural network which utilizes transfer-learning, linguistics, and metadata to learn the hidden patterns. Our goal is to better classify disclosure/non-disclosure content in terms of the context of situation. We trained and evaluated our model on a human-annotated ground truth dataset, containing a total of 5,400 tweets. The results show that the proposed model was able to identify privacy disclosure through tweets with an accuracy of 77.4% while classifying the information type of those tweets with an impressive accuracy of 99%, by jointly learning for two separate tasks.more » « less
- 
            As part of a Youth Advisory Board of teens (YAB), a longitudinal and interactive program to engage with teens for adolescent online safety research, we used an Asynchronous Remote Community (ARC) method with seven teens to explore their social media usage and perspectives on privacy on social media. There was a spectrum of privacy levels in our teen participants’ preferred social media platforms and preferences varied depending on their user goals such as content viewing and socializing. They recognized privacy risks they could encounter on social media, hence, actively used privacy features afforded by platforms to stay safe while meeting their goals. In addition, our teen participants designed solutions that can aid users to exercise more granular control over determining what information on their accounts is to be shared with which groups of users. Our findings highlight the need to ensure researchers and social media developers work with teens to provide teen-centric solutions for safer experiences on social media.more » « less
- 
            Social media applications have benefited users in several ways, including ease of communication and quick access to information. However, they have also introduced several privacy and safety risks. These risks are particularly concerning in the context of interpersonal attacks, which are carried out by abusive friends, family members, intimate partners, co-workers, or even strangers. Evidence shows interpersonal attackers regularly exploit social media platforms to harass and spy on their targets. To help protect targets from such attacks, social media platforms have introduced several privacy and safety features. However, it is unclear how effective they are against interpersonal threats. In this work, we analyzed ten popular social media applications, identifying 100 unique privacy and safety features that provide controls across eight categories: discoverability, visibility, saving and sharing, interaction, self-censorship, content moderation, transparency, and reporting. We simulated 59 different attack actions by a persistent attacker — aimed at account discovery, information gathering, non-consensual sharing, and harassment — and found many were successful. Based on our findings, we proposed improvements to mitigate these risks.more » « less
- 
            Background Social networks such as Twitter offer the clinical research community a novel opportunity for engaging potential study participants based on user activity data. However, the availability of public social media data has led to new ethical challenges about respecting user privacy and the appropriateness of monitoring social media for clinical trial recruitment. Researchers have voiced the need for involving users’ perspectives in the development of ethical norms and regulations. Objective This study examined the attitudes and level of concern among Twitter users and nonusers about using Twitter for monitoring social media users and their conversations to recruit potential clinical trial participants. Methods We used two online methods for recruiting study participants: the open survey was (1) advertised on Twitter between May 23 and June 8, 2017, and (2) deployed on TurkPrime, a crowdsourcing data acquisition platform, between May 23 and June 8, 2017. Eligible participants were adults, 18 years of age or older, who lived in the United States. People with and without Twitter accounts were included in the study. Results While nearly half the respondents—on Twitter (94/603, 15.6%) and on TurkPrime (509/603, 84.4%)—indicated agreement that social media monitoring constitutes a form of eavesdropping that invades their privacy, over one-third disagreed and nearly 1 in 5 had no opinion. A chi-square test revealed a positive relationship between respondents’ general privacy concern and their average concern about Internet research (P<.005). We found associations between respondents’ Twitter literacy and their concerns about the ability for researchers to monitor their Twitter activity for clinical trial recruitment (P=.001) and whether they consider Twitter monitoring for clinical trial recruitment as eavesdropping (P<.001) and an invasion of privacy (P=.003). As Twitter literacy increased, so did people’s concerns about researchers monitoring Twitter activity. Our data support the previously suggested use of the nonexceptionalist methodology for assessing social media in research, insofar as social media-based recruitment does not need to be considered exceptional and, for most, it is considered preferable to traditional in-person interventions at physical clinics. The expressed attitudes were highly contextual, depending on factors such as the type of disease or health topic (eg, HIV/AIDS vs obesity vs smoking), the entity or person monitoring users on Twitter, and the monitored information. Conclusions The data and findings from this study contribute to the critical dialogue with the public about the use of social media in clinical research. The findings suggest that most users do not think that monitoring Twitter for clinical trial recruitment constitutes inappropriate surveillance or a violation of privacy. However, researchers should remain mindful that some participants might find social media monitoring problematic when connected with certain conditions or health topics. Further research should isolate factors that influence the level of concern among social media users across platforms and populations and inform the development of more clear and consistent guidelines.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    