Achieving reversible and tunable assembly of silica nanoparticles at liquid–liquid interfaces is vital for a wide range of scientific and technological applications including sustainable subsurface energy applications, catalysis, drug delivery and material synthesis. In this study, we report the mechanisms controlling the assembly of silica nanoparticles (dia. 50 nm and 100 nm) at water–heptane and water–toluene interfaces using sodium dodecyl sulfate (SDS) surfactant with concentrations ranging from 0.001–0.1 wt% using operando ultrasmall/small-angle X-ray scattering, cryogenic scanning electron microscopy imaging and classical molecular dynamics simulations. The results show that the assembly of silica nanoparticles at water–hydrocarbon interfaces can be tuned by controlling the concentrations of SDS. Silica nanoparticles are found to: (a) dominate the interfaces in the absence of interfacial SDS molecules, (b) coexist with SDS at the interfaces at low surfactant concentration of 0.001 wt% and (c) migrate toward the aqueous phase at a high SDS concentration of 0.1 wt%. Energetic analyses suggest that the van der Waals and electrostatic interactions between silica nanoparticles and SDS surfactants increase with SDS concentration. However, the favorable van der Waals and electrostatic interactions between the silica nanoparticles and toluene or heptane decrease with increasing SDS concentration. As a result, the silica nanoparticles migrate away from the water–hydrocarbon interface and towards bulk water at higher SDS concentrations. These calibrated investigations reveal the mechanistic basis for tuning silica nanoparticle assembly at complex interfaces.
more »
« less
Surface solvation and hindered isomerization at the water/silica interface explored with second harmonic generation
Resonantly enhanced second harmonic generation (SHG) spectra of Coumarin 152 (C152) adsorbed at the water-silica interface show that C152 experiences a local dielectric environment slightly more polar than that of bulk water. This result stands in contrast to recently reported time-resolved fluorescence experiments and simulations that suggest a alkane-like permittivity for interfacial water at strongly associating, hydrophilic solid surfaces. Taken together, these results imply that while the static electric field across the aqueous-silica interface may be large, restricted water dynamics lead to apparent nonpolar solvation behavior similar to that experienced by solutes in confinement. Resonance-enhanced SHG spectra and time-resolved fluorescence of C152 adsorbed to aqueous-hydrophobic silica surfaces show that when water’s ability to hydrogen bond with the silica surface is eliminated, a solute’s interfacial solvation and corresponding ability to photoisomerize converge to an intermediate limit similar to that experienced in bulk acetone or methanol. While water structure and dynamics at solid-liquid interfaces have received considerable attention, results presented below show how strong solvent-substrate interactions can create conflicting pictures of solute reactivity across buried interfaces.
more »
« less
- Award ID(s):
- 1710695
- PAR ID:
- 10113434
- Date Published:
- Journal Name:
- Journal of chemical physics
- Volume:
- 150
- ISSN:
- 1520-9032
- Page Range / eLocation ID:
- 194701
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The ability to examine the vibrational spectra of liquids with nanometer spatial resolution will greatly expand the potential to study liquids and liquid interfaces. In fact, the fundamental properties of water, including complexities in its phase diagram, electrochemistry, and bonding due to nanoscale confinement are current research topics. For any liquid, direct investigation of ordered liquid structures, interfacial double layers, and adsorbed species at liquid–solid interfaces are of interest. Here, a novel way of characterizing the vibrational properties of liquid water with high spatial resolution using transmission electron microscopy is reported. By encapsulating water between two sheets of boron nitride, the ability to capture vibrational spectra to quantify the structure of the liquid, its interaction with the liquid‐cell surfaces, and the ability to identify isotopes including H2O and D2O using electron energy‐loss spectroscopy is demonstrated. The electron microscope used here, equipped with a high‐energy‐resolution monochromator, is able to record vibrational spectra of liquids and molecules and is sensitive to surface and bulk morphological properties both at the nano‐ and micrometer scales. These results represent an important milestone for liquid and isotope‐labeled materials characterization with high spatial resolution, combining nanoscale imaging with vibrational spectroscopy.more » « less
-
The movements of molecules at interfaces and surfaces are restricted by their asymmetric environments, leading to anisotropic orientational motions. In this work, in-plane orientational motions of the –C=O and –CF3 groups of coumarin 153 (C153) at the air/water interface were measured using time-resolved (TR) vibrational sum frequency generation (SFG). The in-plane orientational time constants of the –C=O and –CF3 groups of C153 are found to be 41.5 ± 8.2 and 36.0 ± 4.5 ps. These values are over five-times faster than that of 198 ± 15 ps for the permanent dipole of the whole C153 molecule at the interface, which may indicate that the two groups experience different interfacial friction in the plane. These differences could also be the result of the permanent dipole of C153 being almost five times those of the –C=O and –CF3 groups. The difference in orientational motions reveals the microscopic heterogeneous environment that molecules experience at the interface. While the interfacial dynamics of the two functional groups are similar, our TR-SFG experiments allowed the quantification of the in-plane dynamics of individual functional groups for the first time. Our experimental findings about the interfacial molecular motion have implications for molecular rotations, energy transfer, and charge transfer at material interfaces, photocatalysis interfaces, and biological cell/membrane aqueous interfaces.more » « less
-
ABSTRACT: The presence of asphaltene at both fluid−fluid and fluid−solid interfaces has a wide impact on petroleum recovery processes, for example, by stabilizing oil−gas−water dispersions, adsorbing on reservoir rock surfaces and thus changing their wetting properties, and forming deposits in oil−gas production systems. The Yen-Mullins model for asphaltene behavior in bulk fluids provides a framework for understanding a diverse range of phenomena related to the adsorption dynamics of asphaltene at interfaces and how the adsorbed layers are structured. In this work, we address the relatively less explored parameter, which is accounting for the size and shape of the particles on the interfacial properties and emulsion stability. We discuss our investigations of the asphaltene adsorption and its effects, focusing on oil−water interfaces, and propose a lattice-gas model to explain the experimental observations of the interfacial tension and rheology.more » « less
-
Abstract The hydrated electron, e–(aq), has attracted much attention as a central species in radiation chemistry. However, much less is known about e–(aq)at the water/air surface, despite its fundamental role in electron transfer processes at interfaces. Using time-resolved electronic sum-frequency generation spectroscopy, the electronic spectrum of e–(aq)at the water/air interface and its dynamics are measured here, following photo-oxidation of the phenoxide anion. The spectral maximum agrees with that for bulk e–(aq)and shows that the orbital density resides predominantly within the aqueous phase, in agreement with supporting calculations. In contrast, the chemistry of the interfacial hydrated electron differs from that in bulk water, with e–(aq)diffusing into the bulk and leaving the phenoxyl radical at the surface. Our work resolves long-standing questions about e–(aq)at the water/air interface and highlights its potential role in chemistry at the ubiquitous aqueous interface.more » « less
An official website of the United States government

