Increasing frequency and severity of drought is driving increased use of groundwater resources in arid regions of Northern Kenya, where approximately 2.5 million people depend on groundwater for personal use, livestock, and limited irrigation. As part of a broader effort to provide more sustainable water, sanitation, and hygiene services in the region, we have collected data related to site functionality and use for approximately 120 motorized boreholes across five counties. Using a multilevel model to account for geospatial and temporal clustering, we found that borehole sites, which counties had identified as strategic assets during drought, ran on average about 1.31 h less per day compared to non-strategic borehole sites. As this finding was contrary to our hypothesis that strategic boreholes would exhibit greater use on average compared to non-strategic boreholes, we consider possible explanations for this discrepancy. We also use a coupled human and natural systems framework to explore how policies and program activities in a complex system depend on consistent and reliable feedback mechanisms. Funding was provided by the United States Agency for International Development. The views expressed in this article do not necessarily reflect the views of the United States Agency for International Development or the United States Government.
more »
« less
Quantifying increased groundwater demand from prolonged drought in the East African Rift Valley
Millions of people in the arid regions of Kenya and Ethiopia face water scarcity and frequent drought. Water resource forecasting and reliable operation of groundwater distribution systems may improve drought resilience. In this study, we examined three remote sensing data sets against in-situ sensor-collected groundwater extraction data from 221 water points serving over 1.34 million people across northern Kenya and Afar, Ethiopia between January 1, 2017 and August 31, 2018. In models containing rainfall as a binary variable, we observed an overall 23% increase in borehole runtime following weeks with no rainfall compared to weeks preceded by some rainfall. Further, a 1 mm increase in rainfall was associated with a 1% decrease in borehole use the following week. When surface water availability is reduced during the dry seasons, groundwater demand increases. Our findings emphasize the imperative to maintain functionality of groundwater boreholes in these regions which often suffer drought related emergencies. Funding provided by the United States Agency for International Development, the World Bank, the National Science Foundation, and the Cisco Foundation. The views expressed in this article do not necessarily reflect the views of the United States Agency for International Development or the United States Government.
more »
« less
- Award ID(s):
- 1738321
- PAR ID:
- 10113796
- Date Published:
- Journal Name:
- Science of the total environment
- Volume:
- 666
- ISSN:
- 0048-9697
- Page Range / eLocation ID:
- 1265-1272
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT The fraction of precipitation converted to stream discharge within a watershed, termed as runoff efficiency, may shift as climate changes. Runoff efficiency is known to be temperature‐sensitive in some watersheds, but temperature sensitivity is unquantified in many other watersheds. We identify regions where runoff efficiency is temperature‐sensitive using 942 watersheds, minimally influenced by anthropogenic activity, across the continental United States and Canada. Stepwise regression using historical discharge and climate records shows that runoff efficiency in 10 of 16 hydrologically similar hydro‐regions is sensitive to temperature, expanding the number of locations expected to experience temperature‐driven water stress, particularly in the North American continental interior. Runoff efficiency in all hydro‐regions demonstrates sensitivity to precipitation, but during wet years, runoff efficiency temporarily decreases, likely reflecting increasing groundwater storage. The temporary decrease in runoff efficiency is followed by an increase in the following year, likely due to the release of stored groundwater. This effect suggests changes in runoff efficiency help to stabilise watersheds, making it more difficult to both enter and leave drought as climate changes. The latter effect may partially explain observations of hydrologic drought persistence after meteorological drought ends. Understanding regional temperature sensitivity and the multiple‐year effect of precipitation will improve the ability to forecast runoff efficiency.more » « less
-
Zema, M (Ed.)JUAMI, the joint undertaking for an African materials institute, is a project to build collaborations and materials research capabilities between PhD researchers in Africa, the United States, and the world. Focusing on research-active universities in the East African countries of Kenya, Ethiopia, Tanzania and Uganda, the effort has run a series of schools focused on materials for sustainable energy and materials for sustainable development. These bring together early-career researchers from Africa, the US, and beyond, for two weeks in a close-knit environment. The program includes lectures on cutting-edge research from internationally renowned speakers, highly interactive tutorial lectures on the science behind the research, also from internationally known researchers, and hands-on practicals and team-building exercises that culminate in group proposals from self-formed student teams. The schools have benefited more than 300 early-career students and led to proposals that have received funding and have led to research collaborations and educational non-profits. JUAMI continues and has an ongoing community of alumni who share resources and expertise, and is open to like-minded people who want to join and develop contacts and collaborations internationally.more » « less
-
Groundwater wells are critical infrastructure that enable the monitoring, extraction, and use of groundwater, which has important implications for the environment, water security, and economic development. Despite the importance of wells, a unified database collecting and standardizing information on the characteristics and locations of these wells across the United States has been lacking. To bridge this gap, we have created a comprehensive database of groundwater well records collected from state and federal agencies, which we call the United States Groundwater Well Database (USGWD). Presented in both tabular form and as vector points, the USGWD comprises over 14.2 million well records with attributes such as well purpose, location, depth, and capacity for wells constructed as far back as 1763 to 2023. Rigorous cross-verification steps have been applied to ensure the accuracy of the data. The USGWD stands as a valuable tool for improving our understanding of how groundwater is accessed and managed across various regions and sectors within the United States.more » « less
-
Abstract Groundwater wells are critical infrastructure that enable the monitoring, extraction, and use of groundwater, which has important implications for the environment, water security, and economic development. Despite the importance of wells, a unified database collecting and standardizing information on the characteristics and locations of these wells across the United States has been lacking. To bridge this gap, we have created a comprehensive database of groundwater well records collected from state and federal agencies, which we call the United States Groundwater Well Database (USGWD). Presented in both tabular form and as vector points, USGWD comprises over 14.2 million well records with attributes, such as well purpose, location, depth, and capacity, for wells constructed as far back as 1763 to 2023. Rigorous cross-verification steps have been applied to ensure the accuracy of the data. The USGWD stands as a valuable tool for improving our understanding of how groundwater is accessed and managed across various regions and sectors within the United States.more » « less
An official website of the United States government

