skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Database of Groundwater Wells in the United States
Groundwater wells are critical infrastructure that enable the monitoring, extraction, and use of groundwater, which has important implications for the environment, water security, and economic development. Despite the importance of wells, a unified database collecting and standardizing information on the characteristics and locations of these wells across the United States has been lacking. To bridge this gap, we have created a comprehensive database of groundwater well records collected from state and federal agencies, which we call the United States Groundwater Well Database (USGWD). Presented in both tabular form and as vector points, the USGWD comprises over 14.2 million well records with attributes such as well purpose, location, depth, and capacity for wells constructed as far back as 1763 to 2023. Rigorous cross-verification steps have been applied to ensure the accuracy of the data. The USGWD stands as a valuable tool for improving our understanding of how groundwater is accessed and managed across various regions and sectors within the United States.  more » « less
Award ID(s):
2108196
PAR ID:
10561661
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
HydroShare
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Groundwater wells are critical infrastructure that enable the monitoring, extraction, and use of groundwater, which has important implications for the environment, water security, and economic development. Despite the importance of wells, a unified database collecting and standardizing information on the characteristics and locations of these wells across the United States has been lacking. To bridge this gap, we have created a comprehensive database of groundwater well records collected from state and federal agencies, which we call the United States Groundwater Well Database (USGWD). Presented in both tabular form and as vector points, USGWD comprises over 14.2 million well records with attributes, such as well purpose, location, depth, and capacity, for wells constructed as far back as 1763 to 2023. Rigorous cross-verification steps have been applied to ensure the accuracy of the data. The USGWD stands as a valuable tool for improving our understanding of how groundwater is accessed and managed across various regions and sectors within the United States. 
    more » « less
  2. Water supplies for household use and irrigated agriculture rely on groundwater wells. When wells are drilled into a highly pressurized aquifer, groundwater may flow up the well and onto the land surface without pumping. These flowing artesian wells were common in the early 1900s in the United States before intensive groundwater withdrawals began, but their present-day prevalence remains unknown. Here, we compile and analyze ten thousand well water observations made more than a century ago. We show that flowing artesian conditions characterized ~61% of wells tapping confined aquifers before 1910, but only ~4% of wells tapping confined aquifers today. This pervasive loss of flowing artesian conditions evidences a widespread depressurization of confined aquifers after a century of intensive groundwater use in the United States. We conclude that this depressurization of confined aquifers has profoundly changed groundwater storage and flow, increasing the vulnerability of deep aquifers to pollutants and contributing to land subsidence. 
    more » « less
  3. This is the data used to create the study that is currently under review in a peer-reviewed journal. This dataset contains groundwater chemistry data and groundwater level data across the Meghna riverbank field site near town called Nayapara in Bangladesh. Across the 131 m-wide transect oriented orthogonally to the river shoreline, three types of wells were installed: i) Drive-point piezometers (DP) (“DPa” wells (~0.5 m), “DPb” wells (~1.5 m), “DPc” wells (3 to 4.5 m)); ii) Fully screened shallow piezometers (PZ); iii) Monitoring wells (MW) wAll wells were numbered in descending order away from the river. For example, the DP well that is furthest from the river and has the shallowest depth is referred to as “DP1a”. 
    more » « less
  4. Abstract Most stored groundwater is ‘fossil’ in its age, having been under the ground for more than ~12 thousand years. Mapping where wells tap fossil aquifers is relevant for water quality and quantity management. Nevertheless, the prevalence of wells that tap fossil aquifers is not known. Here we show that wells that are sufficiently deep to tap fossil aquifers are widespread, though they remain outnumbered by shallower wells in most areas. Moreover, the proportion of newly drilled wells that are deep enough to tap fossil aquifers has increased over recent decades. However, this widespread and increased drilling of wells into fossil aquifers is not necessarily associated with groundwater depletion, emphasizing that the presence of fossil groundwater does not necessarily indicate a non-renewable water supply. Our results highlight the importance of safeguarding fossil groundwater quality and quantity to meet present and future water demands. 
    more » « less
  5. In order to understand the extent to which airborne PFAS emission can impact soil and groundwater, we conducted a sampling campaign in areas of conserved forest lands near Bennington, VT/Hoosick Falls, NY. This has been home to sources of PFAS air-emissions from Teflon-coating operations for over 50 years. Since 2015, the Vermont and New York Departments of Environmental Conservation have documented ∼1200 residential wells and two municipal water systems across a 200 km 2 area contaminated with perfluorooctanoic acid (PFOA). Given the large areal extent of the plume, and the fact that much of the contaminated area lies up-gradient and across rivers from manufactures, we seek to determine if groundwater contamination could have resulted primarily from air-emission, land deposition, and subsequent leaching to infiltrating groundwater. Sampling of soils and groundwater in the Green Mountain National Forest (GMNF) downwind of factories shows that both soil and groundwater PFOA contamination extend uninterrupted from inhabited areas into conserved forest lands. Groundwater springs and seeps in the GMNF located 8 km downwind, but >300 meters vertically above factories, contain up to 100 ppt PFOA. Our results indicate that air-emitted PFAS can contaminate groundwater and soil in areas outside of those normally considered down-gradient of a source with respect to regional groundwater flow. 
    more » « less