skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Conceptual Representations in the Workplace and Classroom Settings: A Comparative Ethnography
The following is a Theory paper that presents an ethnographic exploration into how concepts are situated in workplace and classroom settings. Situated cognition research demonstrates that different contexts wherein learning occurs and knowledge is applied shape our conceptual understanding. Within engineering education and practice this means that practitioners, students, and instructors demonstrate different ways of representing their conceptual knowledge due to the different contexts wherein they learn and apply engineering concepts. The purpose of this paper is to present themes on how practitioners, students, and instructors represent fundamental structural engineering concepts within the contexts of structural engineering design. By representation of concepts we mean the ways in which practitioners, students, and instructors portray and demonstrate their conceptual understanding of concepts through the social and material contexts of the workplace and classroom environments. Previous research on learning and engineering education has shown the influence that social and material contexts within these environments have on our knowing and understanding. The researchers use ethnographic methods consisting of workplace and classroom observations, interviews with practitioners, students, and instructors, and documentation of workplace and academic artifacts—such as drawings, calculations, and notes—to access practitioners’, students’, and instructors’ conceptual representations. These ethnographic methods are conducted at a private engineering firm and in 300 and 400 level structural engineering courses. Preliminary results indicate that instructors’ conceptual representations in the classroom aim to enhance students’ broader understanding of these concepts; whereas students’ conceptual representations are focused towards utility in solving homework and exam problems. Practitioners’ conceptual representations are more flexible and adapt to project and workplace constraints. These results seem to indicate that even when instructors emphasize broader conceptual knowledge, the academic incentives behind homework and test scores lead to more academically focused conceptual representations by students. Furthermore, practitioners’ conceptual representations indicate the necessity of conceptual fluency in the workplace, which contrasts with the rigidity of conceptual representations that students develop in the classroom. This comparison between workplace and academic conceptual representations enhances our understanding of the extent to which students, instructors, and practitioners share similar or different conceptual representations within the domain of structural engineering. This, in turn, may lead to guided curriculum reform efforts aimed at better preparing structural engineering students for their professional careers.  more » « less
Award ID(s):
1664250
PAR ID:
10113901
Author(s) / Creator(s):
Date Published:
Journal Name:
ASEE Annual Conference proceedings
ISSN:
1524-4644
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract BackgroundSituated cognition theory suggests that representations of concepts are products of the environment wherein we learn and apply concepts. This research builds on situated cognition by investigating how concepts are tangible to a professional engineering environment. Purpose/HypothesisThe tangibility of concepts in relation to social and material contexts was defined and explored in this study. Specifically, the conceptual representations of structural loads were examined within workplace and academic environments. Design/MethodA researcher conducted ethnographic fieldwork at a private engineering firm and in undergraduate engineering courses. Data sources from this fieldwork included the ethnographer's participant‐observation field notes, formal and informal interviews, and artifact documentation. ResultsFindings from this study described how academic representations of structural loads are more or less tangible to the social and material contexts of engineering practice. Representations documented in the workplace were found to be tangible to (1) real‐world conditions, (2) project/stakeholder constraints, and (3) engineering tools. Conversely, representations documented in the courses studied exhibited various degrees of tangibility to none, some, or all of these three traits. ConclusionsThese findings explicitly identify the ways in which representations of structural loads differ across academic and workplace environments and how these differences may contribute to the education–practice gap. Specific suggestions for making academic representations more tangible to workplace environments are provided based on findings from in the workplace, previous engineering education literature, and best practices observed in the courses studied. Future research considerations and the value of ethnographic methodology to situated cognition theory are also discussed. 
    more » « less
  2. Large class sizes in engineering programs often prevent instructors from providing detailed and meaningful feedback to students on their homework problems. While the literature shows that frequent and immediate formative feedback has several benefits in terms of knowledge gain and academic motivation, several instructors struggle to provide any feedback. Motivated by this inability, a sketch-based virtual tutoring system, named Mechanix, has been developed and implemented. Mechanix lets the students to sketch their freebody diagram on a virtual interface and the process involved is very close to using a pencil and paper. The system provides real-time feedback on the accuracy of their Freebody diagrams and the solution to the problem. This paper reports the implementation of Mechanix at two large public universities in the United States – Georgia Institute of Technology and Texas State University. Mechanix is used to solve specific assignments from each school that involve the use of freebody diagrams. Pre- and post- concept inventories are used to measure the improvements in the conceptual understanding of the students. The results show that students who solve their homework using Mechanix outperform their peers who do not in one school, whereas the results are similar across the two groups in the second school. The evaluation of the concept inventories shows that the students who used Mechanix has the same level of improvement in their conceptual knowledge compared to the control group. 
    more » « less
  3. Large class sizes in engineering programs often prevent instructors from providing detailed and meaningful feedback to students on their homework problems. While the literature shows that frequent and immediate formative feedback has several benefits in terms of knowledge gain and academic motivation, several instructors struggle to provide any feedback. Motivated by this inability, a sketch-based virtual tutoring system, named Mechanix, has been developed and implemented. Mechanix lets the students to sketch their freebody diagram on a virtual interface and the process involved is very close to using a pencil and paper. The system provides real-time feedback on the accuracy of their Freebody diagrams and the solution to the problem. This paper reports the implementation of Mechanix at two large public universities in the United States – Georgia Institute of Technology and Texas State University. Mechanix is used to solve specific assignments from each school that involve the use of freebody diagrams. Pre- and post- concept inventories are used to measure the improvements in the conceptual understanding of the students. The results show that students who solve their homework using Mechanix outperform their peers who do not in one school, whereas the results are similar across the two groups in the second school. The evaluation of the concept inventories shows that the students who used Mechanix has the same level of improvement in their conceptual knowledge compared to the control group. 
    more » « less
  4. Large class sizes in engineering programs often prevent instructors from providing detailed and meaningful feedback to students on their homework problems. While the literature shows that frequent and immediate formative feedback has several benefits in terms of knowledge gain and academic motivation, several instructors struggle to provide any feedback. Motivated by this inability, a sketch-based virtual tutoring system, named Mechanix, has been developed and implemented. Mechanix lets the students to sketch their freebody diagram on a virtual interface and the process involved is very close to using a pencil and paper. The system provides real-time feedback on the accuracy of their Freebody diagrams and the solution to the problem. This paper reports the implementation of Mechanix at two large public universities in the United States – Georgia Institute of Technology and Texas State University. Mechanix is used to solve specific assignments from each school that involve the use of freebody diagrams. Pre- and post- concept inventories are used to measure the improvements in the conceptual understanding of the students. The results show that students who solve their homework using Mechanix outperform their peers who do not in one school, whereas the results are similar across the two groups in the second school. The evaluation of the concept inventories shows that the students who used Mechanix has the same level of improvement in their conceptual knowledge compared to the control group. 
    more » « less
  5. The highly mathematical nature of introductory level vibrations and control theory courses results in students struggling to understand the concepts. Hands-on activity demonstrated in class can help them better understand the concepts. However, there is still an ongoing effort to lower the currently substantial cost of educational laboratory equipment for undergraduate-level engineering courses. Also, with the COVID-19 crisis, the Spring 2020 academic year took an unexpected turn for academics and students all over the world. Engineering faculty who teach laboratories had to move online and instruct from home. Online course preparation takes more time and effort compared to traditionally designed face-to-face courses and was compounded considering the unprecedented situation where many instructors didn't have time to record data from existing lab equipment or record video in their laboratories. In this paper, we present a Matlab Simscape GUI program designed to simulate modeling and control of dynamical systems for vibrations and control theory courses, and their associated laboratories, as one potential solution for online instruction. To complement the simulation program, online classroom and homework activities were designed using a learning sciences approach connecting several critical educational theories which can bolster student motivation, engagement with the material, and overall learning performance. The simulation is presented along with data from 19 students who completed the associated classroom and homework activities. Survey results probing student perceptions about the value of the learning tasks for the simulation were overwhelmingly positive and indicate this approach holds promise in supporting student learning. 
    more » « less