skip to main content


Title: Reinforcing student learning by MATLAB simscape GUI program for introductory level mechanical vibrations and control theory courses
The highly mathematical nature of introductory level vibrations and control theory courses results in students struggling to understand the concepts. Hands-on activity demonstrated in class can help them better understand the concepts. However, there is still an ongoing effort to lower the currently substantial cost of educational laboratory equipment for undergraduate-level engineering courses. Also, with the COVID-19 crisis, the Spring 2020 academic year took an unexpected turn for academics and students all over the world. Engineering faculty who teach laboratories had to move online and instruct from home. Online course preparation takes more time and effort compared to traditionally designed face-to-face courses and was compounded considering the unprecedented situation where many instructors didn't have time to record data from existing lab equipment or record video in their laboratories. In this paper, we present a Matlab Simscape GUI program designed to simulate modeling and control of dynamical systems for vibrations and control theory courses, and their associated laboratories, as one potential solution for online instruction. To complement the simulation program, online classroom and homework activities were designed using a learning sciences approach connecting several critical educational theories which can bolster student motivation, engagement with the material, and overall learning performance. The simulation is presented along with data from 19 students who completed the associated classroom and homework activities. Survey results probing student perceptions about the value of the learning tasks for the simulation were overwhelmingly positive and indicate this approach holds promise in supporting student learning.  more » « less
Award ID(s):
2002350
NSF-PAR ID:
10334762
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
International Journal of Mechanical Engineering Education
ISSN:
0306-4190
Page Range / eLocation ID:
030641902210850
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper describes the implementation of innovative 3D-printed laboratory equipment linked to inquiry-based learning activities designed to improve learning, increase engineering identity and motivation, and foster a growth mindset in students taking undergraduate level mechanical vibrations courses, control theory courses, and associated laboratories. These innovative designs create new opportunities for hands-on learning, are low-cost, portable, and can be adapted for use in multiple science and engineering disciplines. The learning activities are based on the POGIL model, which has been used across a variety of disciplines including engineering. We describe the features of three separate devices (spring-connected sliding carts, compliant parallel arms with fixed-free ends and a slider mass, and a pendulum with variable tip load) implemented using a quasi-experimental approach with 510 duplicated students across three semesters during the COVID-19 pandemic in multiple lecture courses and laboratory sections. We also present an assessment of impact based on descriptive statistical analyses of survey data for student-reported learning gains and pre-post paired comparison tests on validated instruments measuring perceptions of engineering identity, engineering motivation, and growth mindset. Further, we conducted a student focus group and include salient instructor observations. Results show most students participating in the learning activities using these devices report that it supported their learning “a lot” or “a great deal.” In addition, on six of seven surveyed learning outcomes, most students reported feeling confident enough to complete them on their own or even teach them to someone else. Our data did not show a measurable impact on engineering identity, engineering motivation, or growth mindset, though it does suggest further investigation is merited.

     
    more » « less
  2. This paper presents and discusses the use of simulation-based customizable online learning activities, virtual laboratories, and comprehensive e-Learning environments for teaching subjects such as materials science, chemistry, and biomanufacturing. The virtual equipment and lab assignments have been used for: (i) authentic online experimentation, (ii) homework and control assignments with traditional and blended courses, (iii) preparing students for hands-on work in real labs, (iv) lecture demonstrations, and (v) performance-based assessment of students’ ability to apply gained theoretical knowledge for operating actual equipment and solving practical problems. Using the associated learning and content management system (LCMS) and authoring tools, instructors kept track of student performance and designed new virtual experiments and more personalized learning assignments for students. Virtual X-Ray Laboratory and Web-based Environment for Single-Use Upstream Bioprocessing have been used to illustrate the implementation of the concept of Interactive and Adjustable Cloud-based e-Learning Tools. The virtual labs and e-learning environments have been used at two-year and four-year colleges and universities in the USA, UK, Tanzania and some other countries. The virtual X-Ray lab has also been integrated with the MITx course delivered via the MOOC (massive open online course) edX platform for Massachusetts Institute of Technology undergraduate students.

     
    more » « less
  3. This is a work-in-progress paper. The flipped classroom (FC) model is a well established teaching strategy dating to 1970’s practices in the Soviet Union. FC has two decades of use in post-secondary education since it was proposed by Lage et al. However, breaking studies find no academic improvement with FC model among minority students. Rather, it distances at-risk students. Indeed, certain demographics prefer authoritative over dialogic instruction style. We are motivated to determine FCs effectiveness with students at a medium-sized Hispanic Serving Institution (HSI) and Minority Serving Institution (MSI). For one of our NSF grant activities, we piloted two variations of the flipped classroom model. The key idea is that literature finds that FC classes need better regulation of underperforming students. Generally, the FC models in our work included peer-instruction, active learning, recorded lectures, and pre-assessment quizzes. There were no post-assessment assignments or traditional homework. Some sections employed Just-in-Time-Teaching, and careful selection of groups according to skill (within-class homogenous grouping). Other sections experimented with diversity and inclusion-based grouping and project-based learning. Students at the university are non-traditional, a term used to describe individuals who meet some of the following criteria: having a significant gap between post-secondary education and high-school graduation, being financially independent from their parents, having dependents, and working twenty or more hours per week. 60% of the individuals at our campus are Pell eligible. We study an intersectional inequality: wage-based work is disinclined to accommodate students attending lecture during the work day, and minorities may not prefer dialogic instruction. We analyze student attitudes since Fall 2020, among tens of class sections and hundreds of students. Class sections in the study are upper-division core courses in Computer Science, Computer Engineering and Electrical Engineering. Data is collected from mostly online sections during the COVID-19 pandemic. A pre- and post-surveys were administered collecting demographic information and student attitudes. Hispanic/Latino(a) students found videos to be a complete study medium—that it was not required to seek out third-party materials to prepare for class. They found the class to be more engaging, and self-identified that they could identify previous concepts important to the task at hand. Results were surprising because there were no statistically significant differences with a general population’s exposure to FC. Hispanic/Latino(a)s find the FC model described in our work engaging and effective. 
    more » « less
  4. null (Ed.)
    Engineering instructors often use physical manipulatives such as foam beams, rolling cylinders, and large representations of axis systems to demonstrate mechanics concepts and help students visualize systems. Additional benefits are possible when manipulatives are in the hands of individual students or small teams of students who can explore concepts at their own pace and focus on their specific points of confusion. Online learning modalities require new strategies to promote spatial visualization and kinesthetic learning. Potential solutions include creating videos of the activities, using CAD models to demonstrate the principles, programming computer simulations, and providing hands-on manipulatives to students for at-home use. This Work-in-Progress paper discusses our experiences with this last strategy in statics courses two western community colleges and a western four-year university where we supplied students with their own hands-on kits. We have previously reported on the successful implementation of a hands-on statics kit consisting of 3D printed components and standard hardware. The kit was originally designed for use by teams of students during class to engage with topics such as vectors, moments, and rigid body equilibrium. With the onset of the COVID-19 pandemic and shift to online instruction, the first author developed a scaled down version of the kit for at-home use by individual students and modified the associated activity worksheets accordingly. For the community college courses, local students picked up their models at the campus bookstore. We also shipped some of the kits to students who were unable to come to campus, including some in other countries. Due to problems with printing and availability of materials, only 18 kits were available for the class of 34 students at the university implementation. Due to this circumstance, students were placed in teams and asked to work together virtually, one student showing the kit to the other student as they worked through the worksheet prompts. One community college instructor took this approach as well for a limited number of international students who did not receive their kits in a timely manner due to shipping problems. Two instructors assigned the hands-on kits as asynchronous learning activities in their respective online courses, with limited guidance on their use. The third used the kits primarily in synchronous online class meetings. We found that students’ reaction to the models varied by pilot site and presume that implementation differences contributed to this variation. In all cases, student feedback was less positive than it has been for face-to-face courses that used the models from which the take home kit was adapted. Our main conclusion is that implementation matters. Doing hands-on learning in an online course requires some fundamental rethinking about how the learning is structured and scaffolded. 
    more » « less
  5. Abstract

    Limited resources available to the engineering faculty and students impede student learning and deep understanding of the material that is presented in the dynamics and mechanical vibrations courses. Active learning practices such as learning by doing is an effective way to not only build a solid foundation in knowledge but also help students develop engineering skills. However, these courses are mainly taught in a traditional manner and many students struggle in connecting the theory to its real-world application and lose interest. Although mechanical engineering students get more hands-on opportunities in the laboratories, they take vibrations and control laboratories in the following semesters since vibrations is a pre-requisite for these labs. To address this issue, we designed 3 low-cost, compact, and portable laboratory equipment and fabricated them using 3D printing technology. The first equipment is a 3-pendulum system with different lengths and tip loads that can be utilized in the engineering dynamics course. While the second equipment is a 2 DOF compliant vibration isolator consisting of flexible beams, masses, and a linear actuator, the third equipment is a non-linear cantilever beam to be utilized in the vibrations courses and their associated laboratories.

     
    more » « less