skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Reconfigurable and Adaptive Coupled Relay Resonator Platform for a Moving Receiver
Linearly arranged passive relay resonators have been shown to be able to extend wireless power transfer range. However, extending this relay concept to a 2-D planar array with the intention to cover a larger area presents challenges; naïvely constructing a plane of tessellated relays results in a poor efficiency of power transfer due to complex interactions between relays as the number of relays increases [1]. In this paper, we implement the first electronically reconfigurable relay transmitter system, which allows efficient transfer in large relay arrangements and can track a moving receiver across its coverage area. We propose a receiver tracking method and algorithm which can scan the entire coverage area over 2000 times per second and, once found, can configure the relay array to efficiently deliver power to the receiver.  more » « less
Award ID(s):
1305072
PAR ID:
10114062
Author(s) / Creator(s):
;
Date Published:
Journal Name:
2019 International Workshop on Antenna Technology (iWAT)
Page Range / eLocation ID:
182 to 185
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We propose a novel analytical framework for evaluating the coverage performance of a millimeter wave (mmWave) cellular network where idle user equipments (UEs) act as relays. In this network, the base station (BS) adopts either the direct mode to transmit to the destination UE, or the relay mode if the direct mode fails, where the BS transmits to the relay UE and then the relay UE transmits to the destination UE. To address the drastic rotational movements of destination UEs in practice, we propose to adopt selection combining at destination UEs. New expression is derived for the signal-to-interference-plus-noise ratio (SINR) coverage probability of the network. Using numerical results, we first demonstrate the accuracy of our new expression. Then we show that ignoring spatial correlation, which has been commonly adopted in the literature, leads to severe over estimation of the SINR coverage probability. Furthermore, we show that introducing relays into a mmWave cellular network vastly improves the coverage performance. In addition, we show that the optimal BS density maximizing the SINR coverage probability can be determined by using our analysis. 
    more » « less
  2. Cooperative relays improve reliability and coverage in wireless networks by providing multiple paths for data transmission. Relaying will play an essential role in vehicular networks at higher frequency bands, where mobility and frequent signal blockages cause link outages. To ensure connectivity in a relay-aided vehicular network, the relay selection policy should be designed to efficiently find unblocked relays. Inspired by recent advances in beam management in mobile millimeter wave (mmWave) networks, this paper address the question: how can the best relay be selected with minimal overhead from beam management? In this regard, we formulate a sequential decision problem to jointly optimize relay selection and beam management. We propose a joint relay selection and beam management policy based on deep reinforcement learning (DRL) using the Markov property of beam in- dices and beam measurements. The proposed DRL-based algorithm learns time-varying thresholds that adapt to the dynamic channel conditions and traffic patterns. Numeri- cal experiments demonstrate that the proposed algorithm outperforms baselines without prior channel knowledge. Moreover, the DRL-based algorithm can maintain high spectral efficiency under fast-varying channels. 
    more » « less
  3. In this paper, we consider the problem of constructing paths using decode and forward (DF) relays for millimeter wave (mmWave) backhaul communications in urban environments. Due to the large number of obstacles in urban environments, line-of-sight (LoS) wireless links, which are necessary for backhaul communication, often do not exist between small-cell base stations. To address this, some earlier works proposed creating multi-hop paths that use mmWave relay nodes with LoS communication between every pair of consecutive nodes to form logical links between base stations. We present algorithms, based on a novel widest-path formulation of the problem, for selecting decode and forward relay node locations in such paths. Our main algorithm is the first polynomial-time algorithm that constructs a relay path with a throughput that is proven to be the maximum possible. We also present variations of this algorithm for constrained problems in which: 1) each possible relay location can host only one relay node, and 2) minimizing the number of hops in the relay path is also an objective. For all of the proposed algorithms, the achievable throughput and numbers of relays are evaluated through simulation based on a 3-D model of a section of downtown Atlanta. The results show that, over a large number of random cases, our algorithm can always find paths with very high throughput using a small number of relays. We also compare and contrast the results with our earlier work that studied the use of amplify-and-forward (AF) relays for the same scenario. 
    more » « less
  4. An attractive strategy to improve the energy transfer properties of synthetic dye networks is to optimize the excitonic coupling between the dyes to increase energy transfer rates. To explore this possibility, we investigate the use of J-like cyanine dye dimers (Cy3 and Cy5 dimers) on DNA duplexes as energy transfer relays in molecular photonic wires. This approach is based on using the collective emission dipole of a J-dimer to enhance the FRET rate between the dimer relay and a remote acceptor dye. Experimentally, we find that in room temperature aqueous buffer conditions the dimer relay provided no benefit in energy transfer quantum yield relative to a simple monomer relay. Further investigation led us to determine that enhanced non-radiative relaxation, non-ideal dye orientation within the dimer, and unfavorable dye orientation between the dimer and the acceptor dye limit energy transfer through the dimer relay. We hypothesized that non-radiative relaxation was the largest factor, and demonstrated this by placing the sample in a viscous solvent or cooling the sample, which dramatically improved energy transfer through the J-like dimer relay. Similar to how the formation of DNA-templated J-like dimers has improved, the practical use of J-like dimers to optimize energy transfer quantum efficiency will require improvements in the ability to control orientation between dyes to reach its full potential. 
    more » « less
  5. To avoid interruption of experiment and risk of infection, wireless power transfer (WPT) techniques have been used to eliminate the bulky wires and batteries attached to the animals in rodent electrophysiological applications for long-term in-vivo electrophysiological recordings. Headstage-based neuromodulation device has become one of the most popular methods for neural stimulation in recent times. In this work, a wireless power transfer system is designed which provides a constant power to a headstage based optogenetic stimulator. The proposed research is composed of two parts: i) a unidirectional 28 cm × 21 cm phased array transmitter antenna, and ii) an electrically small bi-directional 2.4 cm × 2.4 cm receiver antenna. A phased array transmitter antenna is designed to provide a uniform power transmission over the 27 cm × 23 cm × 16 cm rat behavioral cage area. The proposed WPT scheme utilizes a near-field power transmission scheme at 2.4 GHz frequency. Simulation results show that the transmitter antenna achieves a -24 dB and receiver antenna achieves a −27 dB return loss (S 11 ) at the resonating frequency. The proposed WPT system shows a maximum of 24.5% power transfer efficiency (PTE) when the receiver is in the center position and is 10 cm distance apart from the transmitter, which is much higher compared to the other state-of-the-art works. The transmitter antenna steers beam from −21° to 27° in ϕ axis and −108° to 74° in θ axis which covers the maximum 6.27 cm 2 area of the cage. The preliminary simulation results of the proposed WPT module show a better prospect for future optogenetics based applications. 
    more » « less