skip to main content


Title: Unfolding adsorption on metal nanoparticles: Connecting stability with catalysis
Metal nanoparticles have received substantial attention in the past decades for their applications in numerous areas, including medicine, catalysis, energy, and the environment. Despite these applications, the fundamentals of adsorption on nanoparticle surfaces as a function of nanoparticle size, shape, metal composition, and type of adsorbate are yet to be found. Herein, we introduce the first universal adsorption model that accounts for detailed nanoparticle structural characteristics, metal composition, and different adsorbates by combining first principles calculations with machine learning. Our model fits a large number of data and accurately predicts adsorption trends on nanoparticles (both monometallic and alloy) that have not been previously seen. In addition to its application power, the model is simple and uses tabulated and rapidly calculated data for metals and adsorbates. We connect adsorption with stability behavior of nanoparticles, thus advancing the design of optimal nanoparticles for applications of interest, such as catalysis.  more » « less
Award ID(s):
1634880
NSF-PAR ID:
10114082
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Science Advances
Volume:
5
Issue:
9
ISSN:
2375-2548
Page Range / eLocation ID:
eaax5101
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Supported lipid bilayers are often used as model systems for studying interactions of biological membranes with protein or nanoparticles. A supported lipid bilayer is a phospholipid bilayer built on a solid substrate. The latter is typically made of silica or a metal oxide due to the ease of its formation and range of compatible measurement techniques. Recently, a solvent-assisted method involving supported lipid bilayer formation has allowed the extension of compatible substrate materials to include noble metals such as gold. Here, we examine the influence of substrate composition (SiO2 vs Au) on the interactions between anionic ligand-coated Au nanoparticles or cytochrome c and zwitterionic supported lipid bilayers using quartz crystal microbalance with dissipation monitoring. We find that anionic nanoparticles and cytochrome c have higher adsorption to bilayers formed on Au relative to those on SiO2 substrates. We examine the substrate-dependence of nanoparticle adsorption with DLVO theory and all-atom simulations, and find that the stronger attractive van der Waals and weaker repulsive electrostatic forces between anionic nanoparticles and Au substrates vs anionic nanoparticles and SiO2 substrates could be responsible for the change in adsorption observed. Our results also indicate that the underlying substrate material influences the degree to which nanoscale analytes interact with supported lipid bilayers; therefore, interpretation of the supported lipid bilayer model system should be conducted with understanding of support properties. 
    more » « less
  2. Bicontinuous particle-stabilized emulsions (bijels) are networks of interpenetrating oil/water channels with applications in catalysis, tissue engineering, and energy storage. Bijels can be generated by arresting solvent transfer induced phase separation (STrIPS) via interfacial jamming of nanoparticles. However, until now, STrIPS bijels have only been formed with silica nanoparticles of low surface charge densities, limiting their potential applications in catalysis and fluid transport. Here, we show how strongly charged silica nanoparticles can stabilize bijels. To this end, we carry out a systematic study employing dynamic light scattering, zeta potential, acid/base titrations, turbidimetry, surface tension, and confocal microscopy. We find that moderating the adsorption of oppositely charged surfactants on the particles is crucial to facilitate particle dispersibility in the bijel casting mixture and bijel stabilization. Our results potentially introduce a general understanding for bijel fabrication with different inorganic nanoparticle materials of variable charge density. 
    more » « less
  3. Abstract

    Adsorption plays vital roles in many processes including catalysis, sensing, and nanomaterials design. However, quantifying molecular adsorption, especially at the nanoscale, is challenging, hindering the exploration of its utilization on nanomaterials that possess heterogeneity across different length scales. Here we map the adsorption of nonfluorescent small molecule/ion and polymer ligands on gold nanoparticles of various morphologies in situ under ambient solution conditions, in which these ligands are critical for the particles’ physiochemical properties. We differentiate at nanometer resolution their adsorption affinities among different sites on the same nanoparticle and uncover positive/negative adsorption cooperativity, both essential for understanding adsorbate-surface interactions. Considering the surface density of adsorbed ligands, we further discover crossover behaviors of ligand adsorption between different particle facets, leading to a strategy and its implementation in facet-controlled synthesis of colloidal metal nanoparticles by merely tuning the concentration of a single ligand.

     
    more » « less
  4. Tertiary phosphines are ubiquitous in inorganic chemistry. They play important roles as ligands in coordination chemistry and catalysis. Furthermore, they act as surface acidity probes for oxide surfaces. However, only volatile phosphines, such as PH3 have been applied in this function so far. Here we demonstrate for the first time that the triaryl- and trialkylphosphines PPh3 and PCy3 with high melting points self-adsorb readily onto a silica surface even in the absence of a solvent. The self-adsorption takes place within days when both solid components are mixed and then left undisturbed. The phosphines form well-defined monolayers on the surface and the transition from monolayer to left-over polycrystalline phosphine is abrupt. Therefore, the maximal surface coverage with a monolayer can be easily determined. When the phosphines are adsorbed from solutions, the same maximal surface coverage is found. Solid-state NMR spectroscopy provides a unique analytical tool for studying the structure and dynamics of phosphines in different environments. 31P and 2H solid-state NMR measurements are successfully applied for characterizing the adsorption process and the mobilities of the adsorbed phosphines across the silica surface. Furthermore, using (Ph3P)2Ni(CO)2 as a representative, it is demonstrated that the silica surface has a hitherto unrecognized impact on immobilized and surface-residing catalysts because it competes for phosphine ligands coordinated to a metal center. This competition manifests as one more factor leading to the loss of phosphine ligands and ultimately leaching of immobilized metal complexes or nanoparticle formation. Besides the increase of fundamental knowledge about adsorption processes, the presented results have implications for chromatographic separations of metal complexes and for the lifetime of immobilized and other types of surface-residing catalysts. 
    more » « less
  5. null (Ed.)
    A mechanistic understanding of the influence of the surface properties of engineered nanomaterials on their interactions with cells is essential for designing materials for applications such as bioimaging and drug delivery as well as for assessing nanomaterial safety. Ligand-coated gold nanoparticles have been widely investigated because their highly tunable surface properties enable investigations into the effect of ligand functionalization on interactions with biological systems. Lipophilic ligands have been linked to adverse biological outcomes through membrane disruption, but the relationship between ligand lipophilicity and membrane interactions is not well understood. Here, we use a library of cationic ligands coated on 2 nm gold nanoparticles to probe the impact of ligand end group lipophilicity on interactions with supported phosphatidylcholine lipid bilayers as a model for cytoplasmic membranes. Nanoparticle adsorption to and desorption from the model membranes were investigated by quartz crystal microbalance with dissipation monitoring. We find that nanoparticle adsorption to model membranes increases with ligand lipophilicity. The effects of ligand structure on gold nanoparticle attachment were further analyzed using atomistic molecular dynamics simulations, which showed that the increase in ligand lipophilicity promotes ligand intercalation into the lipid bilayer. Together, the experimental and simulation results could be described by a two-state model that accounts for the initial attachment and subsequent conversion to a quasi-irreversibly bound state. We find that only nanoparticles coated with the most lipophilic ligands in our nanoparticle library undergo conversion to the quasi-irreversible state. We propose that the initial attachment is governed by interaction between the ligands and phospholipid tail groups, whereas conversion into the quasi-irreversibly bound state reflects ligand intercalation between phospholipid tail groups and eventual lipid extraction from the bilayer. The systematic variation of ligand lipophilicity enabled us to demonstrate that the lipophilicity of cationic ligands correlates with nanoparticle-bilayer adsorption and suggested that changing the nonpolar ligand R group promotes a mechanism of ligand intercalation into the bilayer associated with irreversible adsorption. 
    more » « less