skip to main content


Title: Deformation behavior of core–shell nanowire structures with coherent and semi-coherent interfaces
The mechanical properties of core–shell bimetallic composite nanowires, forming the bases of nanoporous metallic foams, have been investigated and compared with pure metal nanowires using molecular dynamics simulations. In the current study, pure copper and gold nanowires under uniaxial loading were tested at room temperature and compared to composite nanowires of the same materials (core) with a nickel coating (shell). The core radius ranged from 1 to 15 nm, and the shell thickness ranged from 0.1 to 5 nm. The tension strain was performed along the [001] direction under room temperature. Both coherent and semi-coherent composite nanowires were studied, and the effect of coating layer thickness was investigated. The strengthening mechanisms of the core–shell structures due to the presence of the two different types of interfaces were investigated for various nickel thicknesses. The atomistic simulation results revealed that the addition of the nickel shell strengthens the structure when the layer thickness exceeds a critical value.  more » « less
Award ID(s):
1634640
NSF-PAR ID:
10114084
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of Materials Research
Volume:
34
Issue:
07
ISSN:
0884-2914
Page Range / eLocation ID:
1093 to 1102
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Silver nanowires (AgNWs) hold great promise for applications in wearable electronics, flexible solar cells, chemical and biological sensors, photonic/plasmonic circuits, and scanning probe microscopy (SPM) due to their unique plasmonic, mechanical, and electronic properties. However, the lifetime, reliability, and operating conditions of AgNW-based devices are significantly restricted by their poor chemical stability, limiting their commercial potentials. Therefore, it is crucial to create a reliable oxidation barrier on AgNWs that provides long-term chemical stability to various optical, electrical, and mechanical devices while maintaining their high performance. Here we report a room-temperature solution-phase approach to grow an ultra-thin, epitaxial gold coating on AgNWs to effectively shield the Ag surface from environmental oxidation. The Ag@Au core-shell nanowires (Ag@Au NWs) remain stable in air for over six months, under elevated temperature and humidity (80 °C and 100% humidity) for twelve weeks, in physiological buffer solutions for three weeks, and can survive overnight treatment of an oxidative solution (2% H 2 O 2 ). The Ag@Au core-shell NWs demonstrated comparable performance as pristine AgNWs in various electronic, optical, and mechanical devices, such as transparent mesh electrodes, surface-enhanced Raman spectroscopy (SERS) substrates, plasmonic waveguides, plasmonic nanofocusing probes, and high-aspect-ratio, high-resolution atomic force microscopy (AFM) probes. These Au@Ag core-shell NWs offer a universal solution towards chemically-stable AgNW-based devices without compromising material property or device performance. 
    more » « less
  2. Flexible optics and optoelectronic devices require stretchable and compliant antireflection coatings (ARC). Conventional optical coatings, typically inorganic thin films, are brittle and crack under strain, while porous or patterned surfaces often lack environmental endurance and/or involve complex processing. Polymeric optical thin films prepared by initiated chemical vapor deposition (iCVD) comprise a promising alternative class of materials. With iCVD, multilayered, uniform thin film coatings can be synthesized conformally on the surface of a temperature-sensitive substrate near room temperature with precise compositional and thickness control. In this study, a model two-layer coating design consisting of poly(1 H ,1 H ,6 H ,6 H -perfluorohexyl diacrylate) (pPFHDA) with a refractive index at 633 nm of n 633 = 1.426 was deposited atop poly(4-vinylpyridine) (p4VP, n 633 = 1.587). Broadband antireflection over the visible wavelength range (400–750 nm) was conferred to a transparent, flexible thermoplastic polyurethane (TPU) substrate ( n 633 ∼ 1.51), reducing the front-surface reflectance from ∼4% to ∼2%. The superior mechanical compliance of polymer ARCs over conventional inorganic coatings (MgF 2 , SiO 2 , and Al 2 O 3 ) on the TPU substrate was thoroughly investigated by monitoring the evolution of film morphology and tensile fracture with applied equibiaxial strain. The polymer ARC withstood at least ε = 1.64% equibiaxial strain without fracture, while all inorganic coatings cracked. Through a repeated application of strain over hundreds of cycles, the antireflection by the polymer film was shown to possess excellent stability and fatigue resilience. Finally, simulations of established iCVD polymer chemistries possessing larger index contrast revealed that reflectance can be further reduced to <1% or better. 
    more » « less
  3. null (Ed.)
    Abstract We report the demonstration of the first axial AlInN ultraviolet core-shell nanowire light-emitting diodes with highly stable emission in the ultraviolet wavelength range. During epitaxial growth of the AlInN layer, an AlInN shell is spontaneously formed, resulting in reduced nonradiative recombination on the nanowire surface. The AlInN nanowires exhibit a high internal quantum efficiency of ~52% at room temperature for emission at 295 nm. The peak emission wavelength can be varied from 290 nm to 355 nm by changing the growth conditions. Moreover, significantly strong transverse magnetic (TM) polarized emission is recorded, which is ~4 times stronger than the transverse electric (TE) polarized light at 295 nm. This study provides an alternative approach for the fabrication of new types of high-performance ultraviolet light emitters. 
    more » « less
  4. Abstract

    A new class of core–shell adsorbents has been created by electrospun metal–organic framework (MOF) particles embedded in polymer nanofibers, which have provided many unique properties compared to the existing MOF coating technologies. For the first time, we demonstrate the improved adsorption selectivity of CO2over N2using electrospun polymer/ZIF‐8 adsorbents in experiments. Furthermore, an analytical model based on the assumption that the diffusivity in core is 10 times higher than that in shell is developed to describe the theory of improved selectivity for core–shell adsorbents that is validated against a more accurate finite element model developed in COMSOL. Our model shows three regimes including exclusive shell uptake, linear core uptake, and asymptotic core uptake. These regimes are related to material properties and uptake times, which could be used as design criteria to balance core stability, maximum selectivity, and maximum uptake. An advanced HAADF STEM tomography (MovieS1) shows that the shell thickness in the case of polymer/ZIF‐8 is on the order of 10 nm, allowing the regime of maximum selectivity to be realized. Kinetically limited adsorption tests at 45°C demonstrate that these composite fibers can perform in a regime of selectivity and uptake for the separation of CO2and N2that is unobtainable by either the MOF or fiber independently, showing a great potential for postcombustion CO2capture.

     
    more » « less
  5. ABSTRACT Composite nanostructured foams consisting of a metallic shell deposited on a polymeric core were formed by plating copper via electroless deposition on electrospun polycaprolactone (PCL) fiber mats. The final structure consisted of 1000-nm scale PCL fibers coated with 100s of nm of copper, leading to final core-shell thicknesses on the order of 1000-3000 nm. The resulting open cell, core-shell foams had relative densities between 4 and 15 %. By controlling the composition of the adjuncts in the plating bath, particularly the composition of formaldehyde, the relative thickness of copper coating as the fiber diameter could be controlled. As-spun PCL mats had a nominal compressive modulus on the order of 0.1 MPa; adding a uniform metallic shell increased the modulus up to 2 MPa for sub-10 % relative density foams. A computational materials science analysis using density functional theory was used to explore the effects pre-treatment with Pd may have on the density of nuclei formed during electroless plating. 
    more » « less