skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Binder Jetting Additive Manufacturing: Powder Packing in Shell Printing
Shell printing is an advantageous binder jetting technique that prints only a thin shell of the intended object to enclose the loose powder in the core. In this study, powder packing in the shell and core was investigated for the first time. By examining the density and microstructure of the printed samples, powder packing was found to be different between the shell and core. In addition, the powder particle size and layer thickness were found to affect the powder packing in the shell and core differently. At a 200 µm layer thickness, for the 10 µm and 20 µm powders, the core was less dense than the shell and had a layered microstructure. At a 200 µm layer thickness, for the 70 µm powder, the core was denser and had a homogeneous microstructure. For the 20 µm powder, by reducing the layer thickness from 200 µm to 70 µm, the core became denser than the shell, and the microstructure of the core became homogeneous. The different results could be attributed to the different scenarios of particle rearrangement between the shell and core for powders of different particle sizes and at different layer thicknesses. Considering that the core was denser and more homogeneous than the shell when the proper layer thickness and powder particle size were selected, shell printing could be a promising method to tailor density and reduce anisotropy.  more » « less
Award ID(s):
1762341
PAR ID:
10467315
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Journal of Manufacturing and Materials Processing
Volume:
7
Issue:
1
ISSN:
2504-4494
Page Range / eLocation ID:
4
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract This paper reports a study on the effects of particle size distribution (tuned by mixing different-sized powders) on density of a densely packed powder, powder bed density, and sintered density in binder jetting additive manufacturing. An analytical model was used first to study the mixture packing density. Analytical results showed that multimodal (bimodal or trimodal) mixtures could achieve a higher packing density than their component powders and there existed an optimal mixing fraction to achieve the maximum mixture packing density. Both a lower component particle size ratio (fine to coarse) and a larger component packing density ratio (fine to coarse) led to a larger maximum mixture packing density. A threshold existed for the component packing density ratio, below which the mixing method was not effective for density improvement. Its relationship to the component particle size ratio was calculated and plotted. In addition, the dependence of the optimal mixing fraction and maximum mixture packing density on the component particle size ratio and component packing density ratio was calculated and plotted. These plots can be used as theoretical tools to select parameters for the mixing method. Experimental results of tap density were consistent with the above-mentioned analytical predictions. Also, experimental measurements showed that powders with multimodal particle size distributions achieved a higher tap density, powder bed density, and sintered density in most cases. 
    more » « less
  2. Abstract Feedstock powders used in binder jetting additive manufacturing include nanopowder, micropowder, and granulated powder. Two important characteristics of the feedstock powders are flowability and sinterability. This paper aims to compare the flowability and sinterability of different feedstock powders. Three powders were compared: nanopowder (with a particle size of ∼100 nm), micropowder (with a particle size of 70 μm), and granulated powder (with a granule size of ∼70 μm) made from the nanopowder by spray freeze drying. Flowability metrics employed included apparent density (AD), tap density (TD), volumetric flow rate (VFR), mass flow rate (MFR), Hausner ratio (HR), Carr index (CI), and repose angle (RA). Sinterability metrics employed included sintered bulk density (SBD), volumetric shrinkage (VS), and densification ratio (DR). Results show that the granulated powder has a higher flowability than the nanopowder and a higher sinterability than the micropowder. Moreover, different flowability metric values of the granulated powder are close to those of the micropowder, indicating that these two powers have a comparably high flowability. Similarly, different sinterability metric values of the granulated powder are close to those of the nanopowder, indicating that these two powders have a comparably high sinterability. 
    more » « less
  3. null (Ed.)
    Binder jet 3D printing combined with post-deposition sintering is a non-beam additive manufacturing (AM) method for the creation of complex metallic structures. Binder saturation and particle morphology are two important factors affecting the quality of printed parts. Here, we investigated the effects of binder saturation on dimension accuracy, porosity, microstructure and microhardness of nickel-based alloy 625 samples made of differently atomized powders. Argon gas atomized (GA) and water atomized (WA) nickel-based alloy 625 powders were used to binder jet samples for a detailed comparative study. The optimal binder saturation for WA system is 60% to 70%, whereas for GA system the optimal is about 80%. Generally, GA samples achieved better overall quality than WA samples in terms of packing density, dimensional accuracy, sintered density, and microhardness. This difference is attributed mainly to the particle morphology including sphericity and roundness. The critical threshold for visible binder bleeding phenomenon in WA and GA systems is determined to be 120% and 140% binder saturation, respectively. Mechanisms for binder bleeding phenomenon at different saturation levels for WA and GA systems are discussed in detail. A pore evolution model is proposed to better understand the printing and sintering processes. 
    more » « less
  4. The primary advantage of the high energy ball milling (HEBM) process is its ability to synthesize a homogeneous mixture with submicron (up to nanoscale) particle size. This approach is a viable process for particle size reduction and grain refinement of magnetic powders, which affects their domain structure and by extension the resulting magnetic properties. In this research, we designed a 9-ball milling experiment by keeping the rotational speed constant at 300rpm and varying the ball-to-powder ratio of 5:1, 8:1, and 10:1 for 6hrs, lOhrs, and 14hrs milling times. The strontium ferrite magnetic powders subjected to HEBM were analyzed for crystallite size and behavior via XRD, particle size reduction via SEM/ImageJ software/originLabPro, and magnetic performance via powder-based VSM measurement. The magnetic performance of the ball-milled strontium ferrite powders shows a good combination of appreciable increment in the S-values (a ratio of the remanence to saturation magnetization) and a considerable decline in coercivity (<10% decrease) at 6hrs of milling duration. The particle size obtained at 6hr-8:1BPR is 0.59 µm with about 44% reduction from the 1.05 µm particle size of the unmilled strontium ferrites, which is within the reported single-domain particle critical size (0.5 µm - 0.65 µm). The particle size reduction of 0.59 µm at 6hr-8: lBPR would be beneficial in enabling strong interfacial bonding when the ball­milled strontium ferrite powders are used in polymer-bonded magnets. 
    more » « less
  5. Cobalt ferrite (CoFe2O4)/barium titanate (BaTiO3) particulate composites exhibiting high magnetoelectric coefficients were synthesized from low-cost commercial precursors using mechanical ball milling followed by high-temperature annealing. CoFe2O4 (20 nm–50 nm) and either cubic or tetragonal BaTiO3 nanoparticle powders were used for the synthesis. It was found that utilizing a 50 nm cubic BaTiO3 powder as a precursor results in a composite with a magnetoelectric coupling coefficient value as high as 4.3 mV/Oe cm, which is comparable to those of chemically synthesized core–shell CoFe2O4–BaTiO3 nanoparticles. The microstructure of these composites is dramatically different from the composite synthesized using 200 nm tetragonal BaTiO3 powder. CoFe2O4 grains in the composite prepared using cubic BaTiO3 powder are larger (by at least an order of magnitude) and significantly better electrically insulated from each other by the surrounding BaTiO3 matrix, which results in a high electrical resistivity material. It is hypothesized that mechanical coupling between larger CoFe2O4 grains well embedded in a BaTiO3 matrix in combination with high electrical resistivity of the material enhances the observed magnetoelectric effect. 
    more » « less