skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Stochastic control and non-equilibrium thermodynamics: fundamental limits
We consider damped stochastic systems in a controlled (time-varying) potential and study their transition between specified Gibbs-equilibria states in finite time. By the second law of thermody- namics, the minimum amount of work needed to transition from one equilibrium state to another is the difference between the Helmholtz free energy of the two states and can only be achieved by a reversible (infinitely slow) process. The minimal gap between the work needed in a finite-time transition and the work during a reversible one, turns out to equal the square of the optimal mass transport (Wasserstein- 2) distance between the two end-point distributions times the inverse of the duration needed for the transition. This result, in fact, relates non-equilibrium optimal control strategies (protocols) to gradient flows of entropy functionals via the Jordan-Kinderlehrer-Otto scheme. The purpose of this paper is to introduce ideas and results from the emerging field of stochastic thermodynamics in the setting of classical regulator theory, and to draw connections and derive such fundamental relations from a control perspective in a multivariable setting.  more » « less
Award ID(s):
1665031 1901599 1839441 1807664
PAR ID:
10114183
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
IEEE Transactions on Automatic Control
ISSN:
0018-9286
Page Range / eLocation ID:
1 to 1
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We develop a probabilistic approach to continuous-time finite state mean field games. Based on an alternative description of continuous-time Markov chain by means of semimartingale and the weak formulation of stochastic optimal control, our approach not only allows us to tackle the mean field of states and the mean field of control in the same time, but also extend the strategy set of players from Markov strategies to closed-loop strategies. We show the existence and uniqueness of Nash equilibrium for the mean field game, as well as how the equilibrium of mean field game consists of an approximative Nash equilibrium for the game with finite number of players under different assumptions of structure and regularity on the cost functions and transition rate between states. 
    more » « less
  2. null (Ed.)
    We develop a probabilistic approach to continuous-time finite state mean field games. Based on an alternative description of continuous-time Markov chains by means of semimartingales and the weak formulation of stochastic optimal control, our approach not only allows us to tackle the mean field of states and the mean field of control at the same time, but also extends the strategy set of players from Markov strategies to closed-loop strategies. We show the existence and uniqueness of Nash equilibrium for the mean field game as well as how the equilibrium of a mean field game consists of an approximative Nash equilibrium for the game with a finite number of players under different assumptions of structure and regularity on the cost functions and transition rate between states. 
    more » « less
  3. Abstract Stochastic thermodynamics lays down a broad framework to revisit the venerable concepts of heat, work and entropy production for individual stochastic trajectories of mesoscopic systems. Remarkably, this approach, relying on stochastic equations of motion, introduces time into the description of thermodynamic processes—which opens the way to fine control them. As a result, the field of finite-time thermodynamics of mesoscopic systems has blossomed. In this article, after introducing a few concepts of control for isolated mechanical systems evolving according to deterministic equations of motion, we review the different strategies that have been developed to realize finite-time state-to-state transformations in both over and underdamped regimes, by the proper design of time-dependent control parameters/driving. The systems under study are stochastic, epitomized by a Brownian object immersed in a fluid; they are thus strongly coupled to their environment playing the role of a reservoir. Interestingly, a few of those methods (inverse engineering, counterdiabatic driving, fast-forward) are directly inspired by their counterpart in quantum control. The review also analyzes the control through reservoir engineering. Besides the reachability of a given target state from a known initial state, the question of the optimal path is discussed. Optimality is here defined with respect to a cost function, a subject intimately related to the field of information thermodynamics and the question of speed limit. Another natural extension discussed deals with the connection between arbitrary states or non-equilibrium steady states. This field of control in stochastic thermodynamics enjoys a wealth of applications, ranging from optimal mesoscopic heat engines to population control in biological systems. 
    more » « less
  4. Soner, Mete (Ed.)
    For time-inconsistent stochastic controls in discrete time and finite horizon, an open problem in Bj ̈ork and Murgoci (Finance Stoch, 2014) is the existence of an equilibrium control. A nonrandomized Borel measurable Markov equilibrium policy exists if the objective is inf-compact in every time step. We provide a sufficient condition for the inf-compactness and thus existence, with costs that are lower semicontinuous (l.s.c.) and bounded from below and transition kernels that are continuous in controls under given states. The control spaces need not to be compact 
    more » « less
  5. Physical systems transition between states with finite speed that is limited by energetic costs. In this work, we derive bounds on transition times for general Langevin systems that admit a decomposition into reversible and irreversible dynamics, in terms of the Wasserstein distance between states and the energetic costs associated with respective reversible and irreversible currents. For illustration we discuss Brownian particles subject to arbitrary forcing and an RLC circuit with time-varying inductor. 
    more » « less