skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Wasserstein speed limits for Langevin systems
Physical systems transition between states with finite speed that is limited by energetic costs. In this work, we derive bounds on transition times for general Langevin systems that admit a decomposition into reversible and irreversible dynamics, in terms of the Wasserstein distance between states and the energetic costs associated with respective reversible and irreversible currents. For illustration we discuss Brownian particles subject to arbitrary forcing and an RLC circuit with time-varying inductor.  more » « less
Award ID(s):
2347357
PAR ID:
10600771
Author(s) / Creator(s):
; ;
Publisher / Repository:
American Physical Society
Date Published:
Journal Name:
Physical Review Research
Volume:
6
Issue:
3
ISSN:
2643-1564
Subject(s) / Keyword(s):
Thermodynamic speed limits Langevin systems
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Reversible to irreversible (R-IR) transitions arise in numerous periodically driven collectively interacting systems that, after a certain number of driving cycles, organize into a reversible state where the particle trajectories repeat during every or every few cycles. On the irreversible side of the transition, the motion is chaotic. R-IR transitions were first systematically studied for periodically sheared dilute colloids, and have now been found in a wide variety of both soft and hard matter periodically driven systems, including amorphous solids, crystals, vortices in type-II superconductors, and magnetic textures. It has been shown that in several of these systems, the transition to a reversible state is an absorbing phase transition with a critical divergence in the organization timescale at the transition. The same systems are capable of storing multiple memories and may exhibit return point memory. We give an overview of R-IR transitions including recent advances in the field and discuss how the general framework of R-IR transitions could be applied to a much broader class of nonequilibrium systems in which periodic driving occurs, including not only soft and hard condensed matter systems, but also astrophysics, biological systems, and social systems. In particular, some likely candidate systems are commensurate-incommensurate states, systems exhibiting hysteresis or avalanches, nonequilibrium pattern forming states, and other systems with absorbing phase transitions. Periodic driving could be applied to hard condensed matter systems to see if organization into reversible states occurs for metal-insulator transitions, semiconductors, electron glasses, electron nematics, cold atom systems, or Bose-Einstein condensates. R-IR transitions could also be examined in dynamical systems where synchronization or phase locking occurs. We also discuss the possibility of using complex periodic driving, such as changing drive directions or using multiple frequencies, to determine whether these systems can still organize to reversible states or retain complex multiple memories. Finally, we describe features of classical and quantum time crystals that could suggest the occurrence of R-IR transitions in these systems. 
    more » « less
  2. We consider damped stochastic systems in a controlled (time-varying) potential and study their transition between specified Gibbs-equilibria states in finite time. By the second law of thermody- namics, the minimum amount of work needed to transition from one equilibrium state to another is the difference between the Helmholtz free energy of the two states and can only be achieved by a reversible (infinitely slow) process. The minimal gap between the work needed in a finite-time transition and the work during a reversible one, turns out to equal the square of the optimal mass transport (Wasserstein- 2) distance between the two end-point distributions times the inverse of the duration needed for the transition. This result, in fact, relates non-equilibrium optimal control strategies (protocols) to gradient flows of entropy functionals via the Jordan-Kinderlehrer-Otto scheme. The purpose of this paper is to introduce ideas and results from the emerging field of stochastic thermodynamics in the setting of classical regulator theory, and to draw connections and derive such fundamental relations from a control perspective in a multivariable setting. 
    more » « less
  3. Abstract Age-dependent transition of metastable, liquid-like protein condensates to amyloid fibrils is an emergent phenomenon of numerous neurodegeneration-linked protein systems. A key question is whether the thermodynamic forces underlying reversible phase separation and maturation to irreversible amyloids are distinct and separable. Here, we address this question using an engineered version of the microtubule-associated protein Tau, which forms biochemically active condensates. Liquid-like Tau condensates exhibit rapid aging to amyloid fibrils under quiescent, cofactor-free conditions. Tau condensate interface promotes fibril nucleation, impairing their activity to recruit tubulin and catalyze microtubule assembly. Remarkably, a small molecule metabolite, L-arginine, selectively impedes condensate-to-fibril transition without perturbing phase separation in a valence and chemistry-specific manner. By heightening the fibril nucleation barrier, L-arginine counteracts age-dependent decline in the biochemical activity of Tau condensates. These results provide a proof-of-principle demonstration that small molecule metabolites can enhance the metastability of protein condensates against a liquid-to-amyloid transition, thereby preserving condensate function. 
    more » « less
  4. Epithelial–mesenchymal transition (EMT) and its reverse mesenchymal–epithelial transition (MET) are critical during embryonic development, wound healing and cancer metastasis. While phenotypic changes during short-term EMT induction are reversible, long-term EMT induction has been often associated with irreversibility. Here, we show that phenotypic changes seen in MCF10A cells upon long-term EMT induction by TGF β need not be irreversible, but have relatively longer time scales of reversibility than those seen in short-term induction. Next, using a phenomenological mathematical model to account for the chromatin-mediated epigenetic silencing of the miR-200 family by ZEB family, we highlight how the epigenetic memory gained during long-term EMT induction can slow the recovery to the epithelial state post-TGF β withdrawal. Our results suggest that epigenetic modifiers can govern the extent and time scale of EMT reversibility and advise caution against labelling phenotypic changes seen in long-term EMT induction as ‘irreversible’. 
    more » « less
  5. Nucleation in atomic crystallization remains poorly understood, despite advances in classical nucleation theory. The nucleation process has been described to involve a nonclassical mechanism that includes a spontaneous transition from disordered to crystalline states, but a detailed understanding of dynamics requires further investigation. In situ electron microscopy of heterogeneous nucleation of individual gold nanocrystals with millisecond temporal resolution shows that the early stage of atomic crystallization proceeds through dynamic structural fluctuations between disordered and crystalline states, rather than through a single irreversible transition. Our experimental and theoretical analyses support the idea that structural fluctuations originate from size-dependent thermodynamic stability of the two states in atomic clusters. These findings, based on dynamics in a real atomic system, reshape and improve our understanding of nucleation mechanisms in atomic crystallization. 
    more » « less