skip to main content


Title: Investigating the association between late spring Gulf of Mexico sea surface temperatures and U.S. Gulf Coast precipitation extremes with focus on Hurricane Harvey
Abstract

Hurricane Harvey brought extreme levels of rainfall to the Houston, Texas, area over a 7‐day period in August 2017, resulting in catastrophic flooding that caused loss of human life and damage to personal property and public infrastructure. In the wake of this event, there has been interest in understanding the degree to which this event was unusual and estimating the probability of experiencing a similar event in other locations. Additionally, researchers have aimed to better understand the ways in which the sea surface temperature (SST) in the Gulf of Mexico (GoM) is associated with precipitation extremes in this region. This work addresses all of these issues through the development of a multivariate spatial extreme value model.

Our analysis indicates that warmer GoM SSTs are associated with higher precipitation extremes in the western Gulf Coast region during hurricane season and that the precipitation totals observed during Hurricane Harvey are less unusual based on the warm GoM SST in 2017. As SSTs in the GoM are expected to steadily increase over the remainder of this century, this analysis suggests that western Gulf Coast locations may experience more severe precipitation extremes during hurricane season.

 
more » « less
NSF-PAR ID:
10114274
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Environmetrics
Volume:
31
Issue:
2
ISSN:
1180-4009
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Hurricane Harvey delivered over 124 trillion liters of freshwater to the Texas–Louisiana coast and the northwestern Gulf of Mexico (GOM) in late August‐early September 2017. Environmental conditions, size‐fractionated phytoplankton biomass, and pico‐ and nanoplankton abundances (picocyanobacteria, picoeukaryotes, autotrophic, and heterotrophic nanoplankton) were characterized along nearshore‐offshore transects prior to Hurricane Harvey (late July 2017) and in the 3 weeks to 6 months following the storm (September 2017 to March 2018). To understand the extent to which observed changes in the aquatic environment and plankton communities could be attributed to Hurricane Harvey (vs. seasonal or interannual variability), salinity, temperature, and phytoplankton biomass from historical data (2006–2018) were also analyzed. Nearshore stations from September and October 2017 showed significantly lower salinities and overall phytoplankton biomass compared to historical data. Inorganic nitrogen concentrations were minimal in October. Pico‐ and nanoplankton abundances were lower in September and October than prior to the storm, with the exception of picocyanobacteria. In contrast, post‐storm biomass at mid‐shelf stations was within the historical average, while pico‐ and nanoplankton abundances were higher. Offshore stations showed little change in biomass or abundances following the storm. Pre‐storm assemblages of pico‐ and nanoplankton in July 2017 were distinct from those in post‐storm months, and variance in these assemblages and specific group abundances was tied to inorganic nutrients, salinity, and temperature. These results point to significant changes in important members of the plankton that occurred in GOM continental shelf waters following a major hurricane, with important implications for oceanic food webs and biogeochemical cycles.

     
    more » « less
  2. Abstract

    Flows into and out of the Gulf of Mexico (GoM) are integral to North Atlantic Ocean circulation and help facilitate poleward heat transport in the Western Hemisphere. The GoM also serves as a key source of moisture for most of North America. Modern patterns of sea‐surface temperature (SST) and salinity in the GoM are influenced by the Loop Current, its eddy‐shedding dynamics, and the ensuing interplay with coastal processes. Here, we present sub‐centennial‐scale records of SST and stable oxygen isotope composition of seawater (18Osw; a proxy for salinity) over the past 11,700 years using planktic foraminiferal geochemistry in sediments from the Garrison Basin, northwestern GoM. We measuredO and magnesium‐to‐calcium ratios in tests ofGlobigerinoides ruber(white) to generate quantitative estimates of past sea‐surface conditions. Our results replicate and extend late Holocene reconstructions from the Garrison Basin, using which we then create composites of SST and18Osw. We find considerable centennial and millennial‐scale variability in both SST and18Osw, although their evolution over the Holocene is distinct. Whereas mean‐annual SSTs display pronounced millennial‐scale variability,18Oswexhibits a secular trend spanning multiple millennia and points to increasing northwestern GoM surface salinity since the early Holocene. We then synthesize the available Holocene records from across the GoM and alongside the Garrison Basin composite uncover substantial, yet regionally consistent, spatiotemporal variability. Finally, we discuss the role of the Loop Current and coastal influx of freshwater in imposing these heterogeneities. We conclude that dynamic surface‐ocean changes occurred across the GoM over the Holocene.

     
    more » « less
  3. Much of the eastern United States experienced increased precipitation over the twentieth century. Characterizing these trends and their causes is critical for assessing future hydroclimate risks. Here, U.S. precipitation trends are analyzed for 1895–2016, revealing that fall precipitation in the southeastern region north of the Gulf of Mexico (SE-Gulf) increased by nearly 40%, primarily increasing after the mid-1900s. Because fall is the climatological dry season in the SE-Gulf and precipitation in other seasons changed insignificantly, the seasonal precipitation cycle diminished substantially. The increase in SE-Gulf fall precipitation was caused by increased southerly moisture transport from the Gulf of Mexico, which was almost entirely driven by stronger winds associated with enhanced anticyclonic circulation west of the North Atlantic subtropical high (NASH) and not by increases in specific humidity. Atmospheric models forced by observed SSTs and fully coupled models forced by historical anthropogenic forcing do not robustly simulate twentieth-century fall wetting in the SE-Gulf. SST-forced atmospheric models do simulate an intensified anticyclonic low-level circulation around the NASH, but the modeled intensification occurred farther west than observed. CMIP5 analyses suggest an increased likelihood of positive SE-Gulf fall precipitation trends given historical and future GHG forcing. Nevertheless, individual model simulations (both SST forced and fully coupled) only very rarely produce the observed magnitude of the SE-Gulf fall precipitation trend. Further research into model representation of the western ridge of the fall NASH is needed, which will help us to better predict whether twentieth-century increases in SE-Gulf fall precipitation will persist into the future.

     
    more » « less
  4. Abstract

    This study uses the Maine Department of Marine Resources Lobster Sea Sampling data (2000–2016) and logistic models to develop the first time series for the timing and suddenness of onset of the initial intra‐annual molt of American lobster in the Gulf of Maine (GoM), an annual fishery recruitment event crucial to fishermen. Data from three GoM regions (eastern, central, and western coastal Maine) were further divided by sex and estimated maturity of sampled lobsters for analysis. We found differences in the patterns of initial molt timing and suddenness between the regions, sexes, and stages of maturity. Using the Northeast Coastal Ocean Forecasting System hindcast temperatures, seasonal accumulated degrees above 5°C were used to describe the thermal history for each region at ocean depths of about 5 and 110 m. These temperature metrics were used in generalized linear models to investigate the potential effects of seasonal temperatures on the initial molt season. Results showed that initial intra‐annual molting of lobsters was variable from 2000 to 2016, with periods of both earlier and more sudden molts and later and more protracted molts. Warmer temperatures, specifically inshore temperatures, were generally associated with an earlier molt, but without complete uniformity in the direction and magnitude across seasons, regions, and lobster demographics. We also discuss why developing molt time series and quantifying the connection to the bottom temperatures are necessary and emphasized why existing monitoring programs and the applied quantification techniques herein make this relationship difficult to quantify.

     
    more » « less
  5. Abstract

    Summer rainfall in the southeast Prairie Pothole Region (SEPPR) is an important part of a vital wetland ecosystem that various species use as their habitat. We examine sources and pathways for summer rainfall moisture, large‐scale features influencing moisture delivery, and large‐scale connections related to summer moisture using the Hybrid Single‐Particle Lagrangian Integrated Trajectory (HYSPLIT) model. Analysis of HYSPLIT back trajectories shows that land is the primary moisture source for summer rainfall events indicating moisture recycling plays an important role in precipitation generation. The Great Plains Low‐Level Jet/Maya Express is the most prominent moisture pathway. It impacts events sourced by land and the Gulf of Mexico (GoM), the secondary moisture source. There is a coupling between land, atmosphere, and ocean conveyed by large‐scale climate connections between rainfall events and sea surface temperature (SST), Palmer Drought Severity Index, and 850‐mb heights. Land‐sourced events have a connection to the northern Pacific and northwest Atlantic Oceans, soil moisture over the central U.S., and low‐pressure systems over the SEPPR. GoM‐sourced events share the connection to soil moisture over the central U.S. but also show connections to SSTs in the North Pacific and Atlantic Oceans and the GoM, soil moisture in northern Mexico, and 850‐mb heights in the eastern Pacific Ocean. Both types of events show connections to high 850‐mb heights in the Caribbean which may reflect a connection to Bermuda High. These insights into moisture sources and pathways can improve skill in SEPPR summer rainfall predictions and benefit natural resource managers in the region.

     
    more » « less