skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Out-of-Class Impacts of Flexible Classrooms
This student-led research project analyzes the impact that the conversion of a computer lab to a flexible classroom space had on informal use of the space outside of class time. Studies have been conducted on the benefits of informal learning settings, but there are few studies on how the physical space itself can support the informal learning process. Research surrounding learning spaces in libraries has emphasized use of collaboration and flexible spaces, but these studies have been conducted to inform space design decisions rather than assess the impact of those design decisions. This study investigates the unintended benefits of a new flexible classroom through a post-occupancy space analysis.  more » « less
Award ID(s):
1711533
PAR ID:
10114601
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
ASEE Annual Conference proceedings
ISSN:
1524-4644
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Flexible classroom spaces, which have movable tables and chairs that can be easily rearranged into different layouts, make it easier for instructors to effectively implement active learning than a traditional lecture hall. Instructors can move throughout the room to interact with students during active learning, and they can rearrange the tables into small groups to facilitate conversation between students. Classroom technology, such as wall-mounted monitors and movable whiteboards, also facilitates active learning by allowing students to collaborate. In addition to enabling active learning, the flexible classroom can still be arranged in front-facing rows that support traditional lecture-based pedagogies. As a result, instructors do not have to make time- and effort-intensive changes to the way their courses are taught in order to use the flexible classroom. Instead, they can make small changes to add active learning. We are in the second year of a study of flexible classroom spaces funded by the National Science Foundation’s Division of Undergraduate Education. This project asks four research questions that investigate the relationships between the instructor, the students, and the classroom: 1) What pedagogy do instructors use in a flexible classroom space? 2) How do instructors take advantage of the instructional affordances (including the movable furniture, movable whiteboards, wall-mounted whiteboards, and wall-mounted monitors) of a flexible classroom? 3) What is the impact of faculty professional development on instructors’ use of flexible classroom spaces? and 4) How does the classroom influence the ways students interpret and engage in group learning activities? In the first year of our study we have developed five research instruments to answer these questions: a three-part classroom observation protocol, an instructor interview protocol, two instructor surveys, and a student survey. We have collected data from nine courses taught in one of ten flexible classrooms at the University of Michigan during the Fall 2018 semester. Two of these courses were first-year introduction to engineering courses co-taught by two instructors, and the other seven courses were sophomore- and junior-level core technical courses taught by one instructor. Five instructors participated in a faculty learning community that met three times during the semester to discuss active learning, to learn how to make the best use of the flexible classroom affordances, and to plan activities to implement in their courses. In each course we gathered data from the perspective of the instructor (through pre- and post-semester interviews), the researcher (through observations of three class meetings with our observation protocol), and the students (through conducting a student survey at the end of the semester). This poster presents qualitative and qualitative analyses of these data to answer our research questions, along with evidence based best practices for effectively using a flexible classroom. 
    more » « less
  2. MOXI is an interactive science center focused on physics topics such as forces, energy, sound, light, and magnetism. MOXI’s exhibits and education program are informed by Physics Education Research (PER) and the Next Generation Science Standards (NGSS). As a result, MOXI is an outstanding laboratory for research on how people learn physics through interactive experiences and how best to support this learning. However, conducting research in public spaces with diverse audiences differs from classroom based research. These differences provide both opportunities and challenges. Effective research and program design requires multiple types of expertise including content, research design, and informal environments. In MOXI’s first two years of operation, we have conducted research across a wide variety of participants and topics through a research- practice partnership (RPP) model. This paper focuses on establishing RPPs and methodological considerations when conducting research in informal science education settings such as interactive science centers. 
    more » « less
  3. For the past decade, learning scientists have come to understand the relationships between learning and space — usually outside of schools and classrooms. More recently, scholars in teaching and teacher education have called for research that considers how space and movement shape teaching and learning. In this paper, we integrate concepts and methods across the learning sciences and teacher education. We examine the relationship between classroom spatial design and the enactment of ambitious and equitable mathematics teaching. Specifically, we apply a case study approach to outline how an experienced teacher’s use of space reflects her pedagogical judgment. Findings and discussion outline six key ways this teacher considers space in her classroom design and her facilitation of classroom interactions. We suggest this study has implications for future efforts to characterize classroom spaces in ways that integrate ideas in the learning sciences and teacher education. 
    more » « less
  4. null (Ed.)
    Informal learning institutions, such as museums, science centers, and community-based organizations, play a critical role in providing opportunities for students to engage in science, technology, engineering, and mathematics (STEM) activities during out-of-school time hours. In recent years, thousands of studies, evaluations, and conference proceedings have been published measuring the impact that these programs have had on their participants. However, because studies of informal science education (ISE) programs vary considerably in how they are designed and in the quality of their designs, it is often quite difficult to assess their impact on participants. Knowing whether the outcomes reported by these studies are supported with sufficient evidence is important not only for maximizing participant impact, but also because there are considerable economic and human resources invested to support informal learning initiatives. To address this problem, I used the theories of impact analysis and triangulation as a framework for developing user-friendly rubrics for assessing quality of research designs and evidence of impact. I used two main sources, research-based recommendations from STEM governing bodies and feedback from a focus group, to identify criteria indicative of high-quality STEM research and study design. Accordingly, I developed three STEM Research Design Rubrics, one for quantitative studies, one for qualitative studies, and another for mixed methods studies, that can be used by ISE researchers, practitioners, and evaluators to assess research design quality. Likewise, I developed three STEM Impact Rubrics, one for quantitative studies, one for qualitative studies, and another for mixed methods studies, that can be used by ISE researchers, practitioners, and evaluators to assess evidence of outcomes. The rubrics developed in this study are practical tools that can be used by ISE researchers, practitioners, and evaluators to improve the field of informal science learning by increasing the quality of study design and for discerning whether studies or program evaluations are providing sufficient evidence of impact. 
    more » « less
  5. In view of the performance limitations of fully-decoupled designs for neural architectures and accelerators, hardware-software co-design has been emerging to fully reap the benefits of flexible design spaces and optimize neural network performance. Nonetheless, such co-design also enlarges the total search space to practically infinity and presents substantial challenges. While the prior studies have been focusing on improving the search efficiency (e.g., via reinforcement learning), they commonly rely on co-searches over the entire architecture-accelerator design space. In this paper, we propose a semi-decoupled approach to reduce the size of the total design space by orders of magnitude, yet without losing optimality. We first perform neural architecture search to obtain a small set of optimal architectures for one accelerator candidate. Importantly, this is also the set of (close-to-)optimal architectures for other accelerator designs based on the property that neural architectures' ranking orders in terms of inference latency and energy consumption on different accelerator designs are highly similar. Then, instead of considering all the possible architectures, we optimize the accelerator design only in combination with this small set of architectures, thus significantly reducing the total search cost. We validate our approach by conducting experiments on various architecture spaces for accelerator designs with different dataflows. Our results highlight that we can obtain the optimal design by only navigating over the reduced search space. 
    more » « less