Abstract This meta-analysis explores the impact of informal science education experiences (such as after-school programs, enrichment activities, etc.) on students' attitudes towards, and interest in, STEM disciplines (Science, Technology, Engineering, and Mathematics). The research addresses two primary questions: (1) What is the overall effect size of informal science learning experiences on students' attitudes towards and interest in STEM? (2) How do various moderating factors (e.g., types of informal learning experience, student grade level, academic subjects, etc.) impact student attitudes and interests in STEM? The studies included in this analysis were conducted within the United States in K-12 educational settings, over a span of thirty years (1992–2022). The findings indicate a positive association between informal science education programs and student interest in STEM. Moreover, the variability in these effects is contingent upon several moderating factors, including the nature of the informal science program, student grade level, STEM subjects, publication type, and publication year. Summarized effects of informal science education on STEM interest are delineated, and the implications for research, pedagogy, and practice are discussed.
more »
« less
Museum-based physics education research through research-practice partnerships (RPPs)
MOXI is an interactive science center focused on physics topics such as forces, energy, sound, light, and magnetism. MOXI’s exhibits and education program are informed by Physics Education Research (PER) and the Next Generation Science Standards (NGSS). As a result, MOXI is an outstanding laboratory for research on how people learn physics through interactive experiences and how best to support this learning. However, conducting research in public spaces with diverse audiences differs from classroom based research. These differences provide both opportunities and challenges. Effective research and program design requires multiple types of expertise including content, research design, and informal environments. In MOXI’s first two years of operation, we have conducted research across a wide variety of participants and topics through a research- practice partnership (RPP) model. This paper focuses on establishing RPPs and methodological considerations when conducting research in informal science education settings such as interactive science centers.
more »
« less
- PAR ID:
- 10173590
- Date Published:
- Journal Name:
- Proceedings of the Physics 2019 Education Research Conference
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A sizable body of research on instructional practices supports the use of worked examples for acquiring cognitive skills in domains such as mathematics and physics. Although examples are also important in the domain of programming, existing research on programming examples is limited. Program examples are used by instructors to achieve two important goals: to explain program behavior and to demonstrate program construction patterns. Program behavior examples are used to demonstrate the semantics of various program constructs (i.e., what is happening inside a program or an algorithm when it is executed). Program construction examples illustrate how to construct a program that achieves a specific purpose. While both functions of program examples are important for learning, most of the example-focused research in computer science education focused on technologies for augmenting program behavior examples such as program visualization, tracing tables, etc. In contrast, advanced technologies for presenting program construction examples were rarely explored. This work introduces interactive Program Construction Examples (PCEX) to begin a systematic exploration of worked-out program construction examples in the domain of computer science education. A classroom evaluation and analysis of the survey data demonstrated that the usage of PCEX examples is associated with better student's learning and performance.more » « less
-
null (Ed.)Informal learning institutions, such as museums, science centers, and community-based organizations, play a critical role in providing opportunities for students to engage in science, technology, engineering, and mathematics (STEM) activities during out-of-school time hours. In recent years, thousands of studies, evaluations, and conference proceedings have been published measuring the impact that these programs have had on their participants. However, because studies of informal science education (ISE) programs vary considerably in how they are designed and in the quality of their designs, it is often quite difficult to assess their impact on participants. Knowing whether the outcomes reported by these studies are supported with sufficient evidence is important not only for maximizing participant impact, but also because there are considerable economic and human resources invested to support informal learning initiatives. To address this problem, I used the theories of impact analysis and triangulation as a framework for developing user-friendly rubrics for assessing quality of research designs and evidence of impact. I used two main sources, research-based recommendations from STEM governing bodies and feedback from a focus group, to identify criteria indicative of high-quality STEM research and study design. Accordingly, I developed three STEM Research Design Rubrics, one for quantitative studies, one for qualitative studies, and another for mixed methods studies, that can be used by ISE researchers, practitioners, and evaluators to assess research design quality. Likewise, I developed three STEM Impact Rubrics, one for quantitative studies, one for qualitative studies, and another for mixed methods studies, that can be used by ISE researchers, practitioners, and evaluators to assess evidence of outcomes. The rubrics developed in this study are practical tools that can be used by ISE researchers, practitioners, and evaluators to improve the field of informal science learning by increasing the quality of study design and for discerning whether studies or program evaluations are providing sufficient evidence of impact.more » « less
-
This research is focused on how to support students’ acquisition of program construction skills through worked examples. Although examples have been consistently proven to be valuable for student’s learning, the learning technology for computer science education lacks program construction examples with interactive elements that could engage students. The goal of this work is to investigate the value of the “engaging” features in programming examples. We introduce PCEX, an online tool developed to present program construction examples in an engaging fashion. We also present the results of a controlled study with a between-subject design that was conducted in a large introductory Python programming class to compare PCEX with non-interactive worked examples focused on program construction. The results of our study show the positive impact of interactive program construction examples on student’s engagement, problem-solving performance, and learning.more » « less
-
null (Ed.)Abstract Biological field stations (BFSs) are well positioned through their informal STEM (science, technology, engineering, and mathematics) education programs to improve levels of science literacy and support environmental sustainability. A survey of 223 US BFSs revealed that their outreach programs strive to promote conservation and environmental stewardship in addition to disseminating place-based knowledge and/or skills. In this article, we unpack the educational approaches that BFSs use to engage learners, the aspects of science literacy most often addressed, and the perceived learning outcomes. Most notably, the BFSs reported that their participants develop an interest in and excitement for science, increase or change their knowledge of program topics, identify more with the scientific enterprise, and engage in scientific practices. The results indicate opportunities for BFSs to conduct more rigorous assessments of participant learning and program impact. By focusing on learner engagement, science learning, and participant outcomes, BFSs and other place-based informal education venues can expand their efforts and better support conservation and science learning.more » « less
An official website of the United States government

