skip to main content


Title: Optimizing state change detection in functional temporal networks through dynamic community detection
Abstract

Dynamic community detection provides a coherent description of network clusters over time, allowing one to track the growth and death of communities as the network evolves. However, modularity maximization, a popular method for performing multilayer community detection, requires the specification of an appropriate null network as well as resolution and interlayer coupling parameters. Importantly, the ability of the algorithm to accurately detect community evolution is dependent on the choice of these parameters. In functional temporal networks, where evolving communities reflect changing functional relationships between network nodes, it is especially important that the detected communities reflect any state changes of the system. Here, we present analytical work suggesting that a uniform null network provides improved sensitivity to the detection of small evolving communities in temporal networks with positive edge weights bounded above by 1, such as certain types of correlation networks. We then propose a method for increasing the sensitivity of modularity maximization to state changes in nodal dynamics by modelling self-identity links between layers based on the self-similarity of the network nodes between layers. This method is more appropriate for functional temporal networks from both a modelling and mathematical perspective, as it incorporates the dynamic nature of network nodes. We motivate our method based on applications in neuroscience where network nodes represent neurons and functional edges represent similarity of firing patterns in time. We show that in simulated data sets of neuronal spike trains, updating interlayer links based on the firing properties of the neurons provides superior community detection of evolving network structure when groups of neurons change their firing properties over time. Finally, we apply our method to experimental calcium imaging data that monitors the spiking activity of hundreds of neurons to track the evolution of neuronal communities during a state change from the awake to anaesthetized state.

 
more » « less
Award ID(s):
1734795
NSF-PAR ID:
10114612
Author(s) / Creator(s):
 ;  ;  ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Journal of Complex Networks
Volume:
7
Issue:
4
ISSN:
2051-1329
Page Range / eLocation ID:
p. 529-553
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Partitioning networks into communities of densely connected nodes is an important tool used widely across different applications, with numerous methods and software packages available for community detection. Modularity-based methods require parameters to be selected (or assume defaults) to control the resolution and, in multilayer networks, interlayer coupling. Meanwhile, most useful algorithms are heuristics yielding different near-optimal results upon repeated runs (even at the same parameters). To address these difficulties, we combine recent developments into a simple-to-use framework for pruning a set of partitions to a subset that are self-consistent by an equivalence with the objective function for inference of a degree-corrected planted partition stochastic block model (SBM). Importantly, this combined framework reduces some of the problems associated with the stochasticity that is inherent in the use of heuristics for optimizing modularity. In our examples, the pruning typically highlights only a small number of partitions that are fixed points of the corresponding map on the set of somewhere-optimal partitions in the parameter space. We also derive resolution parameter upper bounds for fitting a constrained SBM ofKblocks and demonstrate that these bounds hold in practice, further guiding parameter space regions to consider. With publicly available code (http://github.com/ragibson/ModularityPruning), our pruning procedure provides a new baseline for using modularity-based community detection in practice.

     
    more » « less
  2. Abstract

    Understanding the underlying structure of a gene regulatory network is crucial to understand the biological functions of genes or groups of genes. A common strategy to investigate it is to find community structure of these networks. However, methods of finding these communities are often sensitive to noise in the gene expression data and the inherent stochasticity of the community detection algorithms. Here we introduce an approach for identifying functional groups and their hierarchical organization in gene co-expression networks from expression data. A network describing the relatedness in the expression profiles of genes is first inferred using an information theoretic approach. Community structure within the inferred network is found by usingmodularity maximization. This community structure is further refined using three-body structural correlations to robustly identify important functional gene communities. We apply this approach to the expression data ofE. coligenes and identify 25 robust groups, many of which show key associations with important biological functions as demonstrated by gene ontology term enrichment analysis. Thus, our approach makes specific and novel predictions about the function of these genes.

     
    more » « less
  3. Abstract

    Virtual water flows are used to map the indirect water consumption connections implied by the supply chain of a city, region, or country. This information can be used to manage supply chains to achieve environmental policy objectives and mitigate environmental risks to critical supply chains. A limitation of prior work is that these flows are typically analyzed using monolayer networks, which ignores crucial intersectoral or interlayer couplings. Here, we use a multilayer network to account for such couplings when analyzing blue virtual water flows in the United States. Our multilayer network consists of 115 different regions (nodes), covering the entire conterminous United States; 41 coupled economic sectors (layers); and ∼2 × 107possible links. To analyze the multilayer network, we focus on three fundamental network properties: topological connectivity, mesoscale structure, and node centrality. The network has a high connectivity, with each node being on average connected to roughly 2/3 of the network's nodes. Interlayer flows are a major driver of connectivity, representing ∼54% of all the network's connections. Five different groups of tightly connected nodes (communities) characterize the network. Each community represents a preferred spatial mode of long‐range virtual water interaction within the United States. We find that large (populous) cities have a stronger influence than small ones on network functioning because they attract and recirculate more virtual water through their supply chains. Our results also highlight differences between the multilayer and monolayer virtual water network, which overall show that the former provides a more realistic representation of virtual water flows.

     
    more » « less
  4. null (Ed.)
    Abstract Functional connectivity (FC) describes the statistical dependence between neuronal populations or brain regions in resting-state fMRI studies and is commonly estimated as the Pearson correlation of time courses. Clustering or community detection reveals densely coupled sets of regions constituting resting-state networks or functional systems. These systems manifest most clearly when FC is sampled over longer epochs but appear to fluctuate on shorter timescales. Here, we propose a new approach to reveal temporal fluctuations in neuronal time series. Unwrapping FC signal correlations yields pairwise co-fluctuation time series, one for each node pair or edge, and allows tracking of fine-scale dynamics across the network. Co-fluctuations partition the network, at each time step, into exactly two communities. Sampled over time, the overlay of these bipartitions, a binary decomposition of the original time series, very closely approximates functional connectivity. Bipartitions exhibit characteristic spatiotemporal patterns that are reproducible across participants and imaging runs, capture individual differences, and disclose fine-scale temporal expression of functional systems. Our findings document that functional systems appear transiently and intermittently, and that FC results from the overlay of many variable instances of system expression. Potential applications of this decomposition of functional connectivity into a set of binary patterns are discussed. 
    more » « less
  5. The notion that a neuron transmits the same set of neurotransmitters at all of its post-synaptic connections, typically known as Dale's law, is well supported throughout the majority of the brain and is assumed in almost all theoretical studies investigating the mechanisms for computation in neuronal networks. Dale's law has numerous functional implications in fundamental sensory processing and decision-making tasks, and it plays a key role in the current understanding of the structure-function relationship in the brain. However, since exceptions to Dale's law have been discovered for certain neurons and because other biological systems with complex network structure incorporate individual units that send both positive and negative feedback signals, we investigate the functional implications of network model dynamics that violate Dale's law by allowing each neuron to send out both excitatory and inhibitory signals to its neighbors. We show how balanced network dynamics, in which large excitatory and inhibitory inputs are dynamically adjusted such that input fluctuations produce irregular firing events, are theoretically preserved for a single population of neurons violating Dale's law. We further leverage this single-population network model in the context of two competing pools of neurons to demonstrate that effective decision-making dynamics are also produced, agreeing with experimental observations from honeybee dynamics in selecting a food source and artificial neural networks trained in optimal selection. Through direct comparison with the classical two-population balanced neuronal network, we argue that the one-population network demonstrates more robust balanced activity for systems with less computational units, such as honeybee colonies, whereas the two-population network exhibits a more rapid response to temporal variations in network inputs, as required by the brain. We expect this study will shed light on the role of neurons violating Dale's law found in experiment as well as shared design principles across biological systems that perform complex computations. 
    more » « less