Abstract Partitioning networks into communities of densely connected nodes is an important tool used widely across different applications, with numerous methods and software packages available for community detection. Modularity-based methods require parameters to be selected (or assume defaults) to control the resolution and, in multilayer networks, interlayer coupling. Meanwhile, most useful algorithms are heuristics yielding different near-optimal results upon repeated runs (even at the same parameters). To address these difficulties, we combine recent developments into a simple-to-use framework for pruning a set of partitions to a subset that are self-consistent by an equivalence with the objective function for inference of a degree-corrected planted partition stochastic block model (SBM). Importantly, this combined framework reduces some of the problems associated with the stochasticity that is inherent in the use of heuristics for optimizing modularity. In our examples, the pruning typically highlights only a small number of partitions that are fixed points of the corresponding map on the set of somewhere-optimal partitions in the parameter space. We also derive resolution parameter upper bounds for fitting a constrained SBM ofKblocks and demonstrate that these bounds hold in practice, further guiding parameter space regions to consider. With publicly available code (http://github.com/ragibson/ModularityPruning), our pruning procedure provides a new baseline for using modularity-based community detection in practice.
more »
« less
Community detection in the human connectome: Method types, differences and their impact on inference
Abstract Community structure is a fundamental topological characteristic of optimally organized brain networks. Currently, there is no clear standard or systematic approach for selecting the most appropriate community detection method. Furthermore, the impact of method choice on the accuracy and robustness of estimated communities (and network modularity), as well as method‐dependent relationships between network communities and cognitive and other individual measures, are not well understood. This study analyzed large datasets of real brain networks (estimated from resting‐state fMRI from = 5251 pre/early adolescents in the adolescent brain cognitive development [ABCD] study), and = 5338 synthetic networks with heterogeneous, data‐inspired topologies, with the goal to investigate and compare three classes of community detection methods: (i) modularity maximization‐based (Newman and Louvain), (ii) probabilistic (Bayesian inference within the framework of stochastic block modeling (SBM)), and (iii) geometric (based on graph Ricci flow). Extensive comparisons between methods and their individual accuracy (relative to the ground truth in synthetic networks), and reliability (when applied to multiple fMRI runs from the same brains) suggest that the underlying brain network topology plays a critical role in the accuracy, reliability and agreement of community detection methods. Consistent method (dis)similarities, and their correlations with topological properties, were estimated across fMRI runs. Based on synthetic graphs, most methods performed similarly and had comparable high accuracy only in some topological regimes, specifically those corresponding to developed connectomes with at least quasi‐optimal community organization. In contrast, in densely and/or weakly connected networks with difficult to detect communities, the methods yielded highly dissimilar results, with Bayesian inference within SBM having significantly higher accuracy compared to all others. Associations between method‐specific modularity and demographic, anthropometric, physiological and cognitive parameters showed mostly method invariance but some method dependence as well. Although method sensitivity to different levels of community structure may in part explain method‐dependent associations between modularity estimates and parameters of interest, method dependence also highlights potential issues of reliability and reproducibility. These findings suggest that a probabilistic approach, such as Bayesian inference in the framework of SBM, may provide consistently reliable estimates of community structure across network topologies. In addition, to maximize robustness of biological inferences, identified network communities and their cognitive, behavioral and other correlates should be confirmed with multiple reliable detection methods.
more »
« less
- PAR ID:
- 10497805
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Human Brain Mapping
- Volume:
- 45
- Issue:
- 5
- ISSN:
- 1065-9471
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Generating high-quality synthetic networks with realistic community structure is vital to effectively evaluate community detection algorithms. In this study, we propose a new synthetic network generator called the Edge-Connected Stochastic Block Model (EC-SBM). The goal of EC-SBM is to take a given clustered real-world network and produce a synthetic network that resembles the clustered real-world network with respect to both network and community-specific criteria. In particular, we focus on simulating the internal edge connectivity of the clusters in the reference clustered network. Our performance study on large real-world networks shows that EC-SBM is generally more accurate with respect to network and community criteria than currently used approaches for this problem. Furthermore, we demonstrate that EC-SBM can complete analyses on several real-world networks with millions of nodes.more » « less
-
This article seeks to investigate the impact of aging on functional connectivity across different cognitive control scenarios, particularly emphasizing the identification of brain regions significantly associated with early aging. By conceptualizing functional connectivity within each cognitive control scenario as a graph, with brain regions as nodes, the statistical challenge revolves around devising a regression framework to predict a binary scalar outcome (aging or normal) using multiple graph predictors. Popular regression methods utilizing multiplex graph predictors often face limitations in effectively harnessing information within and across graph layers, leading to potentially less accurate inference and predictive accuracy, especially for smaller sample sizes. To address this challenge, we propose the Bayesian Multiplex Graph Classifier (BMGC). Accounting for multiplex graph topology, our method models edge coefficients at each graph layer using bilinear interactions between the latent effects associated with the two nodes connected by the edge. This approach also employs a variable selection framework on node-specific latent effects from all graph layers to identify influential nodes linked to observed outcomes. Crucially, the proposed framework is computationally efficient and quantifies the uncertainty in node identification, coefficient estimation, and binary outcome prediction. BMGC outperforms alternative methods in terms of the aforementioned metrics in simulation studies. An additional BMGC validation was completed using an fMRI study of brain networks in adults. The proposed BMGC technique identified that sensory motor brain network obeys certain lateral symmetries, whereas the default mode network exhibits significant brain asymmetries associated with early aging.more » « less
-
Abstract Intrinsic brain dynamics play a fundamental role in cognitive function, but their development is incompletely understood. We investigated pubertal changes in temporal fluctuations of intrinsic network topologies (focusing on the strongest connections and coordination patterns) and signals, in an early longitudinal sample from the Adolescent Brain Cognitive Development (ABCD) study, with resting-state fMRI (n = 4,099 at baseline; n = 3,376 at follow-up [median age = 10.0 (1.1) and 12.0 (1.1) years; n = 2,116 with both assessments]). Reproducible, inverse associations between low-frequency signal and topological fluctuations were estimated (p < 0.05, β = −0.20 to −0.02, 95% confidence interval (CI) = [−0.23, −0.001]). Signal (but not topological) fluctuations increased in somatomotor and prefrontal areas with pubertal stage (p < 0.03, β = 0.06–0.07, 95% CI = [0.03, 0.11]), but decreased in orbitofrontal, insular, and cingulate cortices, as well as cerebellum, hippocampus, amygdala, and thalamus (p < 0.05, β = −0.09 to −0.03, 95% CI = [−0.15, −0.001]). Higher temporal signal and topological variability in spatially distributed regions were estimated in girls. In racial/ethnic minorities, several associations between signal and topological fluctuations were in the opposite direction of those in the entire sample, suggesting potential racial differences. Our findings indicate that during puberty, intrinsic signal dynamics change significantly in developed and developing brain regions, but their strongest coordination patterns may already be sufficiently developed and remain temporally consistent.more » « less
-
Constant communities, i.e., groups of vertices that are always clustered together, independent of the community detection algorithm used, are necessary for reducing the inherent stochasticity of community detection results. Current methods for identifying constant communities require multiple runs of community detection algorithm(s). This process is extremely time consuming and not scalable to large networks. We propose a novel approach for finding the constant communities, by transforming the problem to a binary classification of edges. We apply the Otsu method from image thresholding to classify edges based on whether they are always within a community or not. Our algorithm does not require any explicit detection of communities and can thus scale to very large networks of the order of millions of vertices. Our results on real-world graphs show that our method is significantly faster and the constant communities produced have higher accuracy (as per F1 and NMI scores) than state-of-the-art baseline methods.more » « less
An official website of the United States government
