skip to main content


Title: Argosy: verifying layered storage systems with recovery refinement
Reasoning about storage systems is challenging because these systems make persistence guarantees even if the system crashes at any point. To achieve these crash-safety guarantees, storage systems include recovery procedures to restore the system to a consistent state after a crash. Moreover, large-scale systems are structured as multiple stacked layers and can require recovery at multiple layers of abstraction. Formal verification can ensure that crash-safety guarantees hold regardless of when the system crashes. To make verification tractable, large-scale systems should be verified in a modular fashion, layer-by-layer in the software stack. Layered recovery makes modularity challenging because the system can crash in the middle of a high-level recovery procedure and must start over from the low-level recovery procedure. We present Argosy, a framework for machine-checked proofs of storage systems that supports layered recovery implementations with modular proofs. The framework is based on combinators for transition relations that are inspired by Kleene algebra, which provides a convenient formalism for specifying and reasoning about crashes and recovery. On top of this framework, we implement Crash Hoare Logic (CHL), the program logic used by FSCQ. Using the logic, we have verified an example of layered recovery featuring a write-ahead log on top of a disk, which itself runs by replicating over two unreliable disks. The metatheory of the framework, the soundness of the program logic, and these examples are all verified in the Coq theorem prover.  more » « less
Award ID(s):
1836712 1563763
NSF-PAR ID:
10115002
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’19)
Page Range / eLocation ID:
1054 to 1068
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The main contribution of this paper is GoJournal, a verified, concurrent journaling system that provides atomicity for storage applications, together with Perennial 2.0, a framework for formally specifying and verifying concurrent crash-safe systems. GoJournal’s goal is to bring the advantages of journaling for code to specs and proofs. Perennial 2.0 makes this possible by introducing several techniques to formalize GoJournal’s specification and to manage the complexity in the proof of GoJournal’s implementation. Lifting predicates and crash framing make the specification easy to use for developers, and logically atomic crash specifications allow for modular reasoning in GoJournal, making the proof tractable despite complex concurrency and crash interleavings. GoJournal is implemented in Go, and Perennial is implemented in the Coq proof assistant. While verifying GoJournal, we found one serious concurrency bug, even though GoJournal has many unit tests. We built a functional NFSv3 server, called GoNFS, to use GoJournal. Performance experiments show that GoNFS provides similar performance (e.g., at least 90% throughput across several benchmarks on an NVMe disk) to Linux’s NFS server exporting an ext4 file system, suggesting that GoJournal is a competitive journaling system. We also verified a simple NFS server using GoJournal’s specs, which confirms that they are helpful for application verification: a significant part of the proof doesn’t have to consider concurrency and crashes. 
    more » « less
  2. Serializability is a well-understood correctness criterion that simplifies reasoning about the behavior of concurrent transactions by ensuring they are isolated from each other while they execute. However, enforcing serializable isolation comes at a steep cost in performance because it necessarily restricts opportunities to exploit concurrency even when such opportunities would not violate application-specific invariants. As a result, database systems in practice support, and often encourage, developers to implement transactions using weaker alternatives. These alternatives break the strong isolation guarantees offered by serializable transactions to permit greater concurrency. Unfortunately, the semantics of weak isolation is poorly understood, and usually explained only informally in terms of low-level implementation artifacts. Consequently, verifying high-level correctness properties in such environments remains a challenging problem. To address this issue, we present a novel program logic that enables compositional reasoning about the behavior of concurrently executing weakly-isolated transactions. Recognizing that the proof burden necessary to use this logic may dissuade application developers, we also describe an inference procedure based on this foundation that ascertains the weakest isolation level that still guarantees the safety of high-level consistency assertions associated with such transactions. The key to effective inference is the observation that weakly-isolated transactions can be viewed as functional (monadic) computations over an abstract database state, allowing us to treat their operations as state transformers over the database. This interpretation enables automated verification using off-the-shelf SMT solvers. Our development is parametric over a transaction’s specific isolation semantics, allowing it to be applicable over a range of concurrency control mechanisms. Case studies and experiments on real-world applications (written in an embedded DSL in OCaml) demonstrate the utility of our approach, and provide strong evidence that automated verification of weakly-isolated transactions can be placed on the same formal footing as their strongly-isolated serializable counterparts. 
    more » « less
  3. This paper introduces Perennial, a framework for verifying concurrent, crash-safe systems. Perennial extends the Iris concurrency framework with three techniques to enable crash-safety reasoning: recovery leases, recovery helping, and versioned memory. To ease development and deployment of applications, Perennial provides Goose, a subset of Go and a translator from that subset to a model in Perennial with support for reasoning about Go threads, data structures, and file-system primitives. We implemented and verified a crash-safe, concurrent mail server using Perennial and Goose that achieves speedup on multiple cores. Both Perennial and Iris use the Coq proof assistant, and the mail server and the framework's proofs are machine checked. 
    more » « less
  4. This paper develops a new approach to verifying a performant file system that isolates crash safety and concurrency reasoning to a transaction system that gives atomic access to the disk, so that the rest of the file system can be verified with sequential reasoning. We demonstrate this approach in DaisyNFS, a Network File System (NFS) server written in Go that runs on top of a disk. DaisyNFS uses GoTxn, a new verified, concurrent transaction system that extends GoJournal with two-phase locking and an allocator. The transaction system's specification formalizes under what conditions transactions can be verified with only sequential reasoning, and comes with a mechanized proof in Coq that connects the specification to the implementation. As evidence that proofs enjoy sequential reasoning, DaisyNFS uses Dafny, a sequential verification language, to implement and verify all the NFS operations on top of GoTxn. The sequential proofs helped achieve a number of good properties in DaisyNFS: easy incremental development (for example, adding support for large files), a relatively short proof (only 2x as many lines of proof as code), and a performant implementation (at least 60% the throughput of the Linux NFS server exporting ext4 across a variety of benchmarks). 
    more » « less
  5. Automated deductive program synthesis promises to generate executable programs from concise specifications, along with proofs of correctness that can be independently verified using third-party tools. However, an attempt to exercise this promise using existing proof-certification frameworks reveals significant discrepancies in how proof derivations are structured for two different purposes: program synthesis and program verification. These discrepancies make it difficult to use certified verifiers to validate synthesis results, forcing one to write an ad-hoc translation procedure from synthesis proofs to correctness proofs for each verification backend. In this work, we address this challenge in the context of the synthesis and verification of heap-manipulating programs. We present a technique for principled translation of deductive synthesis derivations (a.k.a. source proofs) into deductive target proofs about the synthesised programs in the logics of interactive program verifiers. We showcase our technique by implementing three different certifiers for programs generated via SuSLik, a Separation Logic-based tool for automated synthesis of programs with pointers, in foundational verification frameworks embedded in Coq: Hoare Type Theory (HTT), Iris, and Verified Software Toolchain (VST), producing concise and efficient machine-checkable proofs for characteristic synthesis benchmarks. 
    more » « less