skip to main content

Title: Design Human-Robot Collaborative Lifting Task Using Optimization
Abstract

In this paper, an optimization-based dynamic modeling method is used for human-robot lifting motion prediction. The three-dimensional (3D) human arm model has 13 degrees of freedom (DOFs) and the 3D robotic arm (Sawyer robotic arm) has 10 DOFs. The human arm and robotic arm are built in Denavit-Hartenberg (DH) representation. In addition, the 3D box is modeled as a floating-base rigid body with 6 global DOFs. The interactions between human arm and box, and robot and box are modeled as a set of grasping forces which are treated as unknowns (design variables) in the optimization formulation. The inverse dynamic optimization is used to simulate the lifting motion where the summation of joint torque squares of human arm is minimized subjected to physical and task constraints. The design variables are control points of cubic B-splines of joint angle profiles of the human arm, robotic arm, and box, and the box grasping forces at each time point. A numerical example is simulated for huma-robot lifting with a 10 Kg box. The human and robotic arms’ joint angle, joint torque, and grasping force profiles are reported. These optimal outputs can be used as references to control the human-robot collaborative lifting task.

Authors:
;
Award ID(s):
1849279
Publication Date:
NSF-PAR ID:
10379557
Journal Name:
ASME 2021 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    In this study, a 13 degrees of freedom (DOFs) three-dimensional (3D) human arm model and a 10 DOFs 3D robotic arm model are used to validate the grasping force for human-robot lifting motion prediction. The human arm and robotic arm are modeled in Denavit-Hartenberg (DH) representation. In addition, the 3D box is modeled as a floating-base rigid body with 6 global DOFs. The human-box and robot-box interactions are characterized as a collection of grasping forces. The joint torque squares of human arm and robot arm are minimized subjected to physics and task constraints. The design variables include (1) control points of cubic B-splines of joint angle profiles of the human arm, robotic arm, and box; and (2) the discretized grasping forces during lifting. Both numerical and experimental human-robot liftings were performed with a 2 kg box. The simulation reports the human arm’s joint angle profiles, joint torque profiles, and grasping force profiles. The comparisons of the joint angle profiles and grasping force profiles between experiment and simulation are presented. The simulated joint angle profiles have similar trends to the experimental data. It is concluded that human and robot share the load during lifting process, and the predicted human graspingmore »force matches the measured experimental grasping force reasonably well.

    « less
  2. Abstract Symmetric lifting is a common manual material handling strategy in daily life and is the main cause of low back pain. In the literature, symmetric lifting is mainly simulated by using two-dimensional (2D) models because of their simplicity and low computational cost. In practice, however, symmetric lifting can generate asymmetric kinetics especially when the lifting weight is heavy and symmetric lifting based on 2D models misses this important asymmetric kinetics information. Therefore, three-dimensional (3D) models are necessary for symmetric lifting simulation to capture asymmetric kinetics. The purpose of this single-subject case study is to compare the optimization formulations and simulation results for symmetric lifting by using 2D and 3D human models and to identify their pros and cons. In this case study, a 10-degrees-of-freedom (DOFs) 2D skeletal model and a 40-DOFs 3D skeletal model are employed to predict the symmetric maximum weight lifting motion, respectively. The lifting problem is formulated as a multi-objective optimization (MOO) problem to minimize the dynamic effort and maximize the box weight. An inverse dynamic optimization approach is used to determine the optimal lifting motion and the maximum lifting weight considering dynamic joint strength. Lab experiments are carried out to validate the predicted motions. Themore »predicted lifting motion, ground reaction forces (GRFs), and maximum box weight from the 2D and 3D human models for Subject #8 are compared with the experimental data. Recommendations are given.« less
  3. In this study, the three-dimensional (3D) asymmetric maximum weight lifting is predicted using an inverse-dynamics-based optimization method considering dynamic joint torque limits. The dynamic joint torque limits are functions of joint angles and angular velocities, and imposed on the hip, knee, ankle, wrist, elbow, shoulder, and lumbar spine joints. The 3D model has 40 degrees of freedom (DOFs) including 34 physical revolute joints and 6 global joints. A multi-objective optimization (MOO) problem is solved by simultaneously maximizing box weight and minimizing the sum of joint torque squares. A total of 12 male subjects were recruited to conduct maximum weight box lifting using squat-lifting strategy. Finally, the predicted lifting motion, ground reaction forces, and maximum lifting weight are validated with the experimental data. The prediction results agree well with the experimental data and the model’s predictive capability is demonstrated. This is the first study that uses MOO to predict maximum lifting weight and 3D asymmetric lifting motion while considering dynamic joint torque limits. The proposed method has the potential to prevent individuals’ risk of injury for lifting.
  4. Abstract Box delivery is a complicated task and it is challenging to predict the box delivery motion associated with the box weight, delivering speed, and location. This paper presents a single task-based inverse dynamics optimization method for determining the planar symmetric optimal box delivery motion (multi-task jobs). The design variables are cubic B-spline control points of joint angle profiles. The objective function is dynamic effort, i.e., the time integral of the square of all normalized joint torques. The optimization problem includes various constraints. Joint angle profiles are validated through experimental results using root-mean-square-error (RMSE) and Pearson’s correlation coefficient. This research provides a practical guidance to prevent injury risks in joint torque space for workers who lift and deliver heavy objects in their daily jobs.
  5. Abstract

    Lifting heavy weight is one of the main reasons for manual material handling related injuries which can be mitigated by determining the limiting lifting weight of a person. In this study, a 40 degrees of freedom (DOFs) spatial skeletal model was employed to predict the symmetric maximum weight lifting motion. The lifting problem was formulated as a multi-objective optimization (MOO) problem to minimize the dynamic effort and maximize the box weight. An inverse-dynamics-based optimization approach was used to determine the optimal lifting motion and the maximum lifting weight considering dynamic joint strength. The predicted lifting motion, ground reaction forces (GRFs), and maximum box weight were shown to match well with the experimental results. It was found that for the three-dimensional (3D) symmetric lifting the left and right GRFs were not same.