skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: ICRA 2019 Digest Final
Effectiveness of cutting is measured by the ability to achieve material fracture with smooth knife movements. The work performed by a knife overcomes the material toughness, acts against the blade-material friction, and generates shape deformation. This paper studies how to control a 2-DOF robotic arm equipped with a force/torque sensor to cut through an object in a sequence of three moves: press, push, and slice. For each move, a separate control strategy in the Cartesian space is designed to incorporate contact and/or force constraints while following some prescribed trajectory. Experiments conducted over several types of natural foods have demonstrated smooth motions like would be commanded by a human hand.  more » « less
Award ID(s):
1651792
PAR ID:
10117630
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
International Conference on Robotics and Automation
Page Range / eLocation ID:
3066 - 3072
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Cutting skills are important for robots to acquire not only because of a need from kitchen automation, but also because of the technical challenge for robotic manipulation. Modeling of fracture and deformation during a cutting action, often based on the finite element method (FEM), provides the force and shape information used in knife control to implement a skill such as slice, chop, or dice. However, an object’s 3D mesh model can be computationally prohibitive for achieving a desired accuracy since numerous tiny elements must be used near the knife’s moving edge. To address this issue, we represent the object as evenly spaced slices normal to the cutting plane such that cutting of each slice requires only a 2D mesh. Fracture and force can be then interpolated between every two adjacent slices. Experiment with an Adept arm and an ATI force/torque (F/T) sensor has demonstrated reasonable accuracy in force and shape modeling. 
    more » « less
  2. This paper presents a novel noncontact measurement and inspection method based on knife-edge diffraction theory for corrosive wear propagation monitoring at a sharp edge. The degree of corrosion on the sharp edge was quantitatively traced in process by knife-edge interferometry (KEI). The measurement system consists of a laser diode, an avalanche photodiode, and a linear stage for scanning. KEI utilizes the interferometric fringes projected on the measurement plane when the light is incident on a sharp edge. The corrosion propagation on sharp edges was characterized by analyzing the difference in the two interferometric fringes obtained from the control and measurement groups. By using the cross-correlation algorithm, the corrosion conditions on sharp edges were quantitatively quantified into two factors: lag and similarity for edge loss and edge roughness, respectively. The KEI sensor noise level was estimated at 0.03% in full scale. The computational approach to knife-edge diffraction was validated by experimental validation, and the computational error was evaluated at less than 1%. Two sets of razor blades for measurement and control groups were used. As a result, the lag will be increased at an edge loss ratio of 1.007/µm due to the corrosive wear, while the similarity will be decreased at a ratio of 5.4 ×<#comment/> 10 −<#comment/> 4 / µ<#comment/> m with respect to edge roughness change. Experimental results showed a good agreement with computational results. 
    more » « less
  3. Abstract Active needles obtain more significant tip deflection and improved accuracy over passive needles for percutaneous procedures. However, their ability to navigate through tissues to reach targets depends upon the actuation mechanism, the tip shape, and the surface geometry of the shaft. In this study, we investigate the benefits of changing the surface geometry of the active needle shaft in a) needle tip deflection and b) trajectory tracking during tissue insertion. The modifications in passive needle surface geometry have been proven to reduce friction force, tissue displacement, and tissue damage. This study incorporates the effect of modifying the regular smooth cannula with a mosquito proboscis-inspired design in the active needles. The changes in insertion force, tip deflection, and trajectory tracking control during insertion into a prostate-mimicking phantom are measured. Results show that insertion force is reduced by up to 10.67% in passive bevel-tip needles. In active needles, tip deflection increased by 12.91% at 150mm when the cannula is modified. The bioinspired cannula improved trajectory tracking error in the active needle by 39.00% while utilizing up to 17.65% lower control duty cycle. Improving tip deflection and tracking control would lead to better patient outcomes and reduced risk of complications during percutaneous procedures. 
    more » « less
  4. Abstract Active needles obtain more significant tip deflection and improved accuracy over passive needles for percutaneous procedures. However, their ability to navigate through tissues to reach targets depends upon the actuation mechanism, the tip shape, and the surface geometry of the shaft. In this study, we investigate the benefits of changing the surface geometry of the active needle shaft in a) needle tip deflection and b) trajectory tracking during tissue insertion. The modifications in passive needle surface geometry have been proven to reduce friction force, tissue displacement, and tissue damage. This study incorporates the effect of modifying the regular smooth cannula with a mosquito proboscis-inspired design in the active needles. The changes in insertion force, tip deflection, and trajectory tracking control during insertion into a prostate-mimicking phantom are measured. Results show that insertion force is reduced by up to 10.67% in passive bevel-tip needles. In active needles, tip deflection increased by 12.91% at 150mm when the cannula is modified. The bioinspired cannula improved trajectory tracking error in the active needle by 39% while utilizing up to 17.65% lower control duty cycle. Improving tip deflection and tracking control would lead to better patient outcomes and reduced risk of complications during percutaneous procedures. 
    more » « less
  5. Abstract The spanwise undulated cylinder geometry inspired by seal whiskers has been shown to alter shedding frequency and reduce fluid forces significantly compared to smooth cylindrical geometry. Prior research has parameterized the whisker-inspired geometry and demonstrated the relevance of geometric variations on force reduction properties. Among the geometric parameters, undulation wavelength was identified as a significant contributor to forcing changes. To analyze the effect of undulation wavelength, a thorough investigation isolating changes in wavelength is performed to expand upon previous research that parameterized whisker-inspired geometry and the relevance of geometric variations on the force reduction properties. A set of five whisker-inspired models of varying wavelength are computationally simulated at a Reynolds number of 250 and compared with an equivalent aspect ratio smooth elliptical cylinder. Above a critical non-dimensional value, the undulation wavelength reduces the amplitude and frequency of vortex shedding accompanied by a reduction in oscillating lift force. Frequency shedding is tied to the creation of wavelength-dependent vortex structures which vary across the whisker span. These vortices produce distinct shedding modes in which the frequency and phase of downstream structures interact to decrease the oscillating lift forces on the whisker model with particular effectiveness around the wavelength values typically found in nature. The culmination of these location-based modes produces a complex and spanwise-dependent lift frequency spectra at those wavelengths exhibiting maximum force reduction. Understanding the mechanisms of unsteady force reduction and the relationship between undulation wavelength and frequency spectra is critical for the application of this geometry to vibration tuning and passive flow control for vortex-induced vibration (VIV) reduction. 
    more » « less