skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, June 13 until 2:00 AM ET on Friday, June 14 due to maintenance. We apologize for the inconvenience.


Title: Living on the Edge: Serverless Computing and the Cost of Failure Resiliency
Serverless computing platforms have gained popularity because they allow easy deployment of services in a highly scalable and cost-effective manner. By enabling just-in-time startup of container-based services, these platforms can achieve good multiplexing and automatically respond to traffic growth, making them particularly desirable for edge cloud data centers where resources are scarce. Edge cloud data centers are also gaining attention because of their promise to provide responsive, low-latency shared computing and storage resources. Bringing serverless capabilities to edge cloud data centers must continue to achieve the goals of low latency and reliability. The reliability guarantees provided by serverless computing however are weak, with node failures causing requests to be dropped or executed multiple times. Thus serverless computing only provides a best effort infrastructure, leaving application developers responsible for implementing stronger reliability guarantees at a higher level. Current approaches for providing stronger semantics such as ``exactly once'' guarantees could be integrated into serverless platforms, but they come at high cost in terms of both latency and resource consumption. As edge cloud services move towards applications such as autonomous vehicle control that require strong guarantees for both reliability and performance, these approaches may no longer be sufficient. In this paper we evaluate the latency, throughput, and resource costs of providing different reliability guarantees, with a focus on these emerging edge cloud platforms and applications.  more » « less
Award ID(s):
1763548
NSF-PAR ID:
10118173
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
IEEE Workshop on Local and Metropolitan Area Networks
ISSN:
1944-0367
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Serverless computing platforms have gained popularity because they allow easy deployment of services in a highly scalable and cost-effective manner. By enabling just-in-time startup of container-based services, these platforms can achieve good multiplexing and automatically respond to traffic growth, making them particularly desirable for edge cloud data centers where resources are scarce. Edge cloud data centers are also gaining attention because of their promise to provide responsive, low-latency shared computing and storage resources. Bringing serverless capabilities to edge cloud data centers must continue to achieve the goals of low latency and reliability. The reliability guarantees provided by serverless computing however are weak, with node failures causing requests to be dropped or executed multiple times. Thus serverless computing only provides a best effort infrastructure, leaving application developers responsible for implementing stronger reliability guarantees at a higher level. Current approaches for providing stronger semantics such as “exactly once” guarantees could be integrated into serverless platforms, but they come at high cost in terms of both latency and resource consumption. As edge cloud services move towards applications such as autonomous vehicle control that require strong guarantees for both reliability and performance, these approaches may no longer be sufficient. In this paper we evaluate the latency, throughput, and resource costs of providing different reliability guarantees, with a focus on these emerging edge cloud platforms and applications. 
    more » « less
  2. null (Ed.)
    Serverless computing has emerged as a new paradigm for running short-lived computations in the cloud. Due to its ability to handle IoT workloads, there has been considerable interest in running serverless functions at the edge. However, the constrained nature of the edge and the latency sensitive nature of workloads result in many challenges for serverless platforms. In this paper, we present LaSS, a platform that uses model-driven approaches for running latency-sensitive serverless computations on edge resources. LaSS uses principled queuing-based methods to determine an appropriate allocation for each hosted function and auto-scales the allocated resources in response to workload dynamics. LaSS uses a fair-share allocation approach to guarantee a minimum of allocated resources to each function in the presence of overload. In addition, it utilizes resource reclamation methods based on container deflation and termination to reassign resources from over-provisioned functions to under-provisioned ones. We implement a prototype of our approach on an OpenWhisk serverless edge cluster and conduct a detailed experimental evaluation. Our results show that LaSS can accurately predict the resources needed for serverless functions in the presence of highly dynamic workloads, and reprovision container capacity within hundreds of milliseconds while maintaining fair share allocation guarantees. 
    more » « less
  3. Serverless computing is an emerging event-driven programming model that accelerates the development and deployment of scalable web services on cloud computing systems. Though widely integrated with the public cloud, serverless computing use is nascent for edge-based, IoT deployments. In this work, we design and develop STOIC (Serverless TeleOperable HybrId Cloud), an IoT application deployment and offloading system that extends the serverless model in three ways. First, STOIC adopts a dynamic feedback control mechanism to precisely predict latency and dispatch workloads uniformly across edge and cloud systems using a distributed serverless framework. Second, STOIC leverages hardware acceleration (e.g. GPU resources) for serverless function execution when available from the underlying cloud system. Third, STOIC can be configured in multiple ways to overcome deployment variability associated with public cloud use. Finally, we empirically evaluate STOIC using real-world machine learning applications and multi-tier IoT deployments (edge and cloud). We show that STOIC can be used for training image processing workloads (for object recognition) – once thought too resource intensive for edge deployments. We find that STOIC reduces overall execution time (response latency) and achieves placement accuracy that ranges from 92% to 97%. 
    more » « less
  4. Abstract

    Serverless computing is an emerging event‐driven programming model that accelerates the development and deployment of scalable web services on cloud computing systems. Though widely integrated with the public cloud, serverless computing use is nascent for edge‐based, Internet of Things (IoT) deployments. In this work, we present STOIC (serverless teleoperable hybrid cloud), an IoT application deployment and offloading system that extends the serverless model in three ways. First, STOIC adopts a dynamic feedback control mechanism to precisely predict latency and dispatch workloads uniformly across edge and cloud systems using a distributed serverless framework. Second, STOIC leverages hardware acceleration (e.g., GPU resources) for serverless function execution when available from the underlying cloud system. Third, STOIC can be configured in multiple ways to overcome deployment variability associated with public cloud use. We overview the design and implementation of STOIC and empirically evaluate it using real‐world machine learning applications and multitier IoT deployments (edge and cloud). Specifically, we show that STOIC can be used fortrainingimage processing workloads (for object recognition)—once thought too resource‐intensive for edge deployments. We find that STOIC reduces overall execution time (response latency) and achieves placement accuracy that ranges from 92% to 97%.

     
    more » « less
  5. Edge cloud solutions that bring the cloud closer to the sensors can be very useful to meet the low latency requirements of many Internet-of-Things (IoT) applications. However, IoT traffic can also be intermittent, so running applications constantly can be wasteful. Therefore, having a serverless edge cloud that is responsive and provides low-latency features is a very attractive option for a resource and cost-efficient IoT application environment.In this paper, we discuss the key components needed to support IoT traffic in the serverless edge cloud and identify the critical challenges that make it difficult to directly use existing serverless solutions such as Knative, for IoT applications. These include overhead from heavyweight components for managing the overall system and software adaptors for communication protocol translation used in off-the-shelf serverless platforms that are designed for large-scale centralized clouds. The latency imposed by ‘cold start’ is a further deterrent.To address these challenges we redesign several components of the Knative serverless framework. We use a streamlined protocol adaptor to leverage the MQTT IoT protocol in our serverless framework for IoT event processing. We also create a novel, event-driven proxy based on the extended Berkeley Packet Filter (eBPF), to replace the regular heavyweight Knative queue proxy. Our preliminary experimental results show that the event-driven proxy is a suitable replacement for the queue proxy in an IoT serverless environment and results in lower CPU usage and a higher request throughput. 
    more » « less