skip to main content

Search for: All records

Award ID contains: 1763548

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. By modelling how the probability distributions of individuals’ states evolve as new information flows through a network, belief propagation has broad applicability ranging from image correction to virus propagation to even social networks. Yet, its scant implementations confine themselves largely to the realm of small Bayesian networks. Applications of the algorithm to graphs of large scale are thus unfortunately out of reach. To promote its broad acceptance, we enable belief propagation for both small and large scale graphs utilizing GPU processing. We therefore explore a host of optimizations including a new simple yet extensible input format enabling belief propagation to operate at massive scale, along with significant workload processing updates and meticulous memory management to enable our implementation to outperform prior works in terms of raw execution time and input size on a single machine. Utilizing a suite of parallelization technologies and techniques against a diverse set of graphs, we demonstrate that our implementations can efficiently process even massive networks, achieving up to nearly 121x speedups versus our control yet optimized single threaded implementations while supporting graphs of over ten million nodes in size in contrast to previous works’ support for thousands of nodes using CPU-based multi-core and host solutions.more »To assist in choosing the optimal implementation for a given graph, we provide a promising method utilizing a random forest classifier and graph metadata with a nearly 95% F1-score from our initial benchmarking and is portable to different GPU architectures to achieve over an F1-score of over 72% accuracy and a speedup of nearly 183x versus our control running in this new environment.« less
  2. Ensuring high scalability (elastic scale-out and consolidation), as well as high availability (failure resiliency) are critical in encouraging adoption of software-based network functions (NFs). In recent years, two paradigms have evolved in terms of the way the NFs manage their state - namely the Stateful (state is coupled with the NF instance) and a Stateless (state is externalized to a datastore) manner. These two paradigms present unique challenges and opportunities for ensuring high scalability and high availability of NFs and NF chains. In this work, we assess the impact on ensuring the correctness of NF state including the implications of non-determinism in packet processing, and carefully analyze and present the benefits and disadvantages of the two state management paradigms. We leverage OpenNetVM and Redis in-memory datastore to implement both state management paradigms and empirically compare the two. Although the stateless paradigm is desirable for elastic scaling, our experimental results show that, even at line-rate packet processing (10 Gbps), stateful NFs can achieve chain-level failover across servers in a LAN incurring less than 10% performance. The state-of-the-art stateless counterparts incur severe throughput penalties. We observe 30-85% overhead on normal processing, depending on the mode of state updated to the externalized datastore.
  3. Edge data centers are an appealing place for telecommunication providers to offer in-network processing such as VPN services, security monitoring, and 5G. Placing these network services closer to users can reduce latency and core network bandwidth, but the deployment of network functions at the edge poses several important challenges. Edge data centers have limited resource capacity, yet network functions are re-source intensive with strict performance requirements. Replicating services at the edge is needed to meet demand, but balancing the load across multiple servers can be challenging due to diverse service costs, server and flow heterogeneity, and dynamic workload conditions. In this paper, we design and implement a model-based load balancer EdgeBalance for edge network data planes. EdgeBalance predicts the CPU demand of incoming traffic and adaptively distributes flows to servers to keep them evenly balanced. We overcome several challenges specific to network processing at the edge to improve throughput and latency over static load balancing and monitoring-based approaches.
  4. Serverless computing platforms have gained popularity because they allow easy deployment of services in a highly scalable and cost-effective manner. By enabling just-in-time startup of container-based services, these platforms can achieve good multiplexing and automatically respond to traffic growth, making them particularly desirable for edge cloud data centers where resources are scarce. Edge cloud data centers are also gaining attention because of their promise to provide responsive, low-latency shared computing and storage resources. Bringing serverless capabilities to edge cloud data centers must continue to achieve the goals of low latency and reliability. The reliability guarantees provided by serverless computing however are weak, with node failures causing requests to be dropped or executed multiple times. Thus serverless computing only provides a best effort infrastructure, leaving application developers responsible for implementing stronger reliability guarantees at a higher level. Current approaches for providing stronger semantics such as ``exactly once'' guarantees could be integrated into serverless platforms, but they come at high cost in terms of both latency and resource consumption. As edge cloud services move towards applications such as autonomous vehicle control that require strong guarantees for both reliability and performance, these approaches may no longer be sufficient. In this paper we evaluatemore »the latency, throughput, and resource costs of providing different reliability guarantees, with a focus on these emerging edge cloud platforms and applications.« less