skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Electrochemical C–H bond activation via cationic iridium hydride pincer complexes
A C–H bond activation strategy based on electrochemical activation of a metal hydride is introduced. Electrochemical oxidation of ( tBu4 PCP)IrH 4 ( tBu4 PCP is [1,3-( t Bu 2 PCH 2 )-C 6 H 3 ] − ) in the presence of pyridine derivatives generates cationic Ir hydride complexes of the type [( tBu4 PCP)IrH(L)] + (where L = pyridine, 2,6-lutidine, or 2-phenylpyridine). Facile deprotonation of [( tBu4 PCP)IrH(2,6-lutidine)] + with the phosphazene base tert -butylimino-tris(pyrrolidino)phosphorane, t BuP 1 (pyrr), results in selective C–H activation of 1,2-difluorobenzene (1,2-DFB) solvent to generate ( tBu4 PCP)Ir(H)(2,3-C 6 F 2 H 3 ). The overall electrochemical C–H activation reaction proceeds at room temperature without need for chemical activation by a sacrificial alkene hydrogen acceptor. This rare example of undirected electrochemical C–H activation holds promise for the development of future catalytic processes.  more » « less
Award ID(s):
1665135 1665146
PAR ID:
10118253
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Chemical Science
ISSN:
2041-6520
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Reactions of the IrVhydride [MeBDIDipp]IrH4{BDI=(Dipp)NC(Me)CH(Me)CN(Dipp); Dipp=2,6‐iPr2C6H3} with E[N(SiMe3)2]2(E=Sn, Pb) afforded the unusual dimeric dimetallotetrylenes ([MeBDIDipp]IrH)22‐E)2in good yields. Moreover, ([MeBDIDipp]IrH)22‐Ge)2was formed in situ from thermal decomposition of [MeBDIDipp]Ir(H)2Ge[N(SiMe3)2]2. These reactions are accompanied by liberation of HN(SiMe3)2and H2through the apparent cleavage of an E−N(SiMe3)2bond by Ir−H. In a reversal of this process, ([MeBDIDipp]IrH)22‐E)2reacted with excess H2to regenerate [MeBDIDipp]IrH4. Varying the concentrations of reactants led to formation of the trimeric ([MeBDIDipp]IrH2)32‐E)3. The further scope of this synthetic route was investigated with group 15 amides, and ([MeBDIDipp]IrH)22‐Bi)2was prepared by the reaction of [MeBDIDipp]IrH4with Bi(NMe2)3or Bi(OtBu)3to afford the first example of a “naked” two‐coordinate Bi atom bound exclusively to transition metals. A viable mechanism that accounts for the formation of these products is proposed. Computational investigations of the Ir2E2(E=Sn, Pb) compounds characterized them as open‐shell singlets with confined nonbonding lone pairs at the E centers. In contrast, Ir2Bi2is characterized as having a closed‐shell singlet ground state. 
    more » « less
  2. We report the synthesis of molybdenum and tungsten bromo dicarbonyl complexes (POCOPtBu)MIIBr(CO)2(M  =  Mo or W; POCOPtBu  =  κ3-C6H3-1,3-[OP( tBu)2]2) supported by an anionic PCP pincer ligand, and the chromium complex (PNPtBu)Cr0(CO)3(PNPtBu  =  2,6-bis(di- tert-butyl-phosphinomethyl)pyridine) bearing a neutral PNP pincer scaffold. The three group six complexes described in this study have been characterized by Liquid Injection Field Desorption Ionization Mass Spectrometry (LIFDI-MS), NMR, and IR spectroscopy. Single crystal X-ray diffraction studies show the MoIIand WIIcomplexes adopt a six-coordinate distorted trigonal prismatic geometry, whereas the Cr0complex exhibits a distorted octahedral geometry. 
    more » « less
  3. Abstract The production of olefins via on‐purpose dehydrogenation of alkanes allows for a more efficient, selective and lower cost alternative to processes such as steam cracking. Silica‐supported pincer‐iridium complexes of the form [(≡SiO−R4POCOP)Ir(CO)] (R4POCOP=κ3‐C6H3‐2,6‐(OPR2)2) are effective for acceptorless alkane dehydrogenation, and have been shown stable up to 300 °C. However, while solution‐phase analogues of such species have demonstrated high regioselectivity for terminal olefin production under transfer dehydrogenation conditions at or below 240 °C, in open systems at 300 °C, regioselectivity under acceptorless dehydrogenation conditions is consistently low. In this work, complexes [(≡SiO−tBu4POCOP)Ir(CO)] (1) and [(≡SiO−iPr4PCP)Ir(CO)] (2) were synthesized via immobilization of molecular precursors. These complexes were used for gas‐phase butane transfer dehydrogenation using increasingly sterically demanding olefins, resulting in observed selectivities of up to 77 %. The results indicate that the active site is conserved upon immobilization. 
    more » « less
  4. The para-N-pyridyl-based PCP pincer ligand 3,5-bis(di-tert-butylphosphinomethyl)-2,6-dimethylpyridine (pN-tBuPCP-H) was synthesized and metalated to give the iridium complex (pN tBuPCP)IrHCl (2-H). In marked contrast with its phenyl-based congeners (tBuPCP)IrHCl and derivatives, 2-H is highly air sensitive and reacts with oxidants such as ferrocenium, trityl cation, and benzoquinone. These oxidations ultimately lead to intramolecular activation of a phosphino-t-butyl C(sp3)-H bond and cyclometalation. Considering the greater electronegativity of N than C, 2-H is expected to be less easily oxidized than simple PCP derivatives; DFT calculations of direct one-electron oxidations are in good agreement with this expectation. However, 2-H is calculated to undergo metal-ligand-proton tautomerism (MLPT) to give an N-protonated complex that can be described with resonance forms representing a zwitterionic complex (negative charge on Ir) and a p-N-pyridylidene (remote NHC) Ir(I) complex. One-electron oxidation of this tautomer is calculated to be dramatically more favorable than direct oxidation of 2-H (G° = 31.3 kcal/mol). The resulting Ir(II) oxidation product is easily deprotonated to give metalloradical 2• which is observed by NMR spectroscopy. 2• can be further oxidized to give cationic Ir(III) complex, 2+, which can oxidatively add a phosphino-t butyl C-H bond, and undergo deprotonation to give the observed cyclometalated product. DFT calculations indicate that less sterically hindered complexes would preferentially undergo intermolecular addition of C(sp3)-H bonds, for example, of n alkanes. The resulting iridium alkyl complexes could undergo facile -H elimination to afford olefin, thereby completing a catalytic cycle for alkane dehydrogenation that is driven by one-electron oxidation and deprotonation, enabled by MLPT. 
    more » « less
  5. Iridium dibromide complexes of the phenyldiimine ligand 2,6-bis(1-((2,6-dimethylphenyl)imino)ethyl)phenyl, trans-(XyPhDI)IrBr2L, have been synthesized, and relative Ir-L BDFEs have been experimentally determined for a wide range of corresponding adducts of ligands L. An estimate of the absolute enthalpy of Ir-L binding has been obtained from dynamic NMR measurements. The results of DFT calculations are in very good agreement with the relative and absolute experimental values. Computational studies were extended to the formation of adducts of (XyPhDI)IrH2 and (XyPhDI)Ir(I), as well as other (pincer)Ir(I) fragments, (Phebox)Ir(I) and (PCP)Ir(I), to enable a comparison of electronic and steric effects with these archetypal pincer ligands. Attempts to reduce (XyPhDI)IrBr2(MeCN) to a hydride or an Ir(I) complex yielded a dinuclear CN-bridged complex with a methyl ligand on the cyanide-C-bound Ir center (characterized by scXRD), indicating that C-CN bond cleavage took place at that Ir center. DFT calculations indicate that the C-CN bond cleavage occurs at one Ir center with strong assistance by coordination of the CN nitrogen to the other Ir center. 
    more » « less