Abstract Over the past decade, ecologists and physiologists alike have acknowledged the importance of environmental heterogeneity. Meaningful predictions of the responses of organisms to climate will require an explicit understanding of how organismal behavior and physiology are affected by such heterogeneity. Furthermore, the responses of organisms themselves are quite heterogeneous: physiology and behavior vary over different time scales and across different life stages, and because physiological systems do not operate in isolation of one another, they need to be considered in a more integrated fashion. Here, we review case studies from our laboratories to highlight progress that has been made along these fronts and generalizations that might be made to other systems, particularly in the context of predicting responses to climate change.
more »
« less
The World Is Not Flat: Accounting for the Dynamic Nature of the Environment as We Move Beyond Static Experimental Manipulations
Abstract Although we have long understood that environmental variation affects both physiology and behavior, historically, most studies have limited or simplified environmental variation to focus more directly on traits of interest. Recently, a number of investigators have turned their focus toward attempting to incorporate such variation into studies of physiology and behavior, and not surprisingly, are finding that the results from studies that include more realistic variation, both from the environment as well as in physiological processes within individuals, can differ substantially from those of studies that attempt to hold the parameters constant. Understanding the role that this dynamic variation plays in shaping phenotypes is critical given that, under most predictions from future climate change models, increased variability in factors such as temperature and rainfall are predicted.
more »
« less
- Award ID(s):
- 1833590
- PAR ID:
- 10118460
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Integrative and Comparative Biology
- ISSN:
- 1540-7063
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Marine ecosystems are increasingly impacted by global environmental changes, including warming temperatures, deoxygenation, and ocean acidification. Marine scientists recognize intuitively that these environmental changes are translated into community changes via organismal physiology. However, physiology remains a black box in many ecological studies, and coexisting species in a community are often assumed to respond similarly to environmental stressors. Here, we emphasize how greater attention to physiology can improve our ability to predict the emergent effects of ocean change. In particular, understanding shifts in the intensity and outcome of species interactions such as competition and predation requires a sharpened focus on physiological variation among community members and the energetic demands and trophic mismatches generated by environmental changes. Our review also highlights how key species interactions that are sensitive to environmental change can operate as ecological leverage points through which small changes in abiotic conditions are amplified into large changes in marine ecosystems.more » « less
-
ABSTRACT Gonadal sex steroid hormones are well-studied modulators of reproductive physiology and behavior. Recent behavioral endocrinology research has focused on how the brain dynamically responds to – and may even produce – sex steroids, but the gonadal tissues that primarily release these hormones receive much less attention as a potential mediator of behavioral variation. This Commentary revisits mechanisms by which the reproductive hypothalamic–pituitary–gonadal (HPG) axis can be modulated specifically at the gonadal level. These mechanisms include those that may allow the gonad to be regulated independently of the HPG axis, such as receptors for non-HPG hormones, neural inputs and local production of conventional ‘neuropeptides'. Here, I highlight studies that examine variation in these gonadal mechanisms in diverse taxa, with an emphasis on recent transcriptomic work. I then outline how future work can establish functional roles of gonadal mechanisms in reproductive behavior and evaluate gonad responsiveness to environmental cues. When integrated with neural mechanisms, further investigation of gonadal hormone regulation can yield new insight into the control and evolution of steroid-mediated traits, including behavior.more » « less
-
Abstract The plastic ability for a range of phenotypes to be exhibited by the same genotype allows organisms to respond to environmental variation and may modulate fitness in novel environments. Differing capacities for phenotypic plasticity within a population, apparent as genotype by environment interactions (GxE), can therefore have both ecological and evolutionary implications. Epigenetic gene regulation alters gene function in response to environmental cues without changes to the underlying genetic sequence and likely mediates phenotypic variation. DNA methylation is currently the most well described epigenetic mechanism and is related to transcriptional homeostasis in invertebrates. However, evidence quantitatively linking variation in DNA methylation with that of phenotype is lacking in some taxa, including reef‐building corals. In this study, spatial and seasonal environmental variation in Bonaire, Caribbean Netherlands was utilized to assess relationships between physiology and DNA methylation profiles within genetic clones across different genotypes ofAcropora cervicornisandA. palmatacorals. The physiology of both species was highly influenced by environmental variation compared to the effect of genotype. GxE effects on phenotype were only apparent inA. cervicornis. DNA methylation in both species differed between genotypes and seasons and epigenetic variation was significantly related to coral physiological metrics. Furthermore, plastic shifts in physiology across seasons were significantly positively correlated with shifts in DNA methylation profiles in both species. These results highlight the dynamic influence of environmental conditions and genetic constraints on the physiology of two important Caribbean coral species. Additionally, this study provides quantitative support for the role of epigenetic DNA methylation in mediating phenotypic plasticity in invertebrates.more » « less
-
Synopsis As the world becomes warmer and precipitation patterns less predictable, organisms will experience greater heat and water stress. It is crucial to understand the factors that predict variation in thermal and hydric physiology among species. This study focuses on investigating the relationships between thermal and hydric diversity and their environmental predictors in a clade of Hispaniolan anole lizards, which are part of a broader Caribbean adaptive radiation. This clade, the “cybotoid” anoles, occupies a wide range of thermal habitats (from sea level to several kilometers above it) and hydric habitats (such as xeric scrub, broadleaf forest, and pine forest), setting up the possibility for ecophysiological specialization among species. Among the thermal traits, only cold tolerance is correlated with environmental temperature, and none of our climate variables are correlated with hydric physiology. Nevertheless, we found a negative relationship between heat tolerance (critical thermal maximum) and evaporative water loss at higher temperatures, such that more heat-tolerant lizards are also more desiccation-tolerant at higher temperatures. This finding hints at shared thermal and hydric specialization at higher temperatures, underscoring the importance of considering the interactive effects of temperature and water balance in ecophysiological studies. While ecophysiological differentiation is a core feature of the anole adaptive radiation, our results suggest that close relatives in this lineage do not diverge in hydric physiology and only diverge partially in thermal physiology.more » « less
An official website of the United States government
