skip to main content


Title: The reaction of alkyl hydropersulfides (RSSH, R = CH 3 and t Bu) with H 2 S in the gas phase and in aqueous solution
The RSSH + H 2 S → RSH + HSSH reaction has been suggested by numerous labs to be important in H 2 S-mediated biological processes. Seven different mechanisms for this reaction (R = CH 3 , as a model) have been studied using the DFT methods (M06-2X and ωB97X-D) with the Dunning aug-cc-pV(T+d)Z basis sets. The reaction of CH 3 SSH with gas phase H 2 S has a very high energy barrier (>45 kcal mol −1 ), consistent with the available experimental observations. A series of substitution reactions R 1 –S–S–H + − S–R 2 (R 1 = Me, t Bu, Ad, R 2 = H, S–Me, S– t Bu, S–Ad) have been studied. The regioselectivity is largely affected by the steric bulkiness of R 1 , but is much less sensitive to R 2 . Thus, when R 1 is Me, all − S–R 2 favorably attack the internal S atom, leading to R 1 –S–S–R 2 . While for R 1 = t Bu, Ad, all − S–R 2 significantly prefer to attack the external S atom to form − S–S–R 2 . These results are in good agreement with the experimental observations.  more » « less
Award ID(s):
1661604
NSF-PAR ID:
10118786
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Physical Chemistry Chemical Physics
Volume:
21
Issue:
2
ISSN:
1463-9076
Page Range / eLocation ID:
537 to 545
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The origin in deshielding of 29 Si NMR chemical shifts in R 3 Si–X, where X = H, OMe, Cl, OTf, [CH 6 B 11 X 6 ], toluene, and O X (O X = surface oxygen), as well as i Pr 3 Si + and Mes 3 Si + were studied using DFT methods. At the M06-L/6-31G(d,p) level of theory the geometry optimized structures agree well with those obtained experimentally. The trends in 29 Si NMR chemical shift also reproduce experimental trends; i Pr 3 Si–H has the most shielded 29 Si NMR chemical shift and free i Pr 3 Si + or isolable Mes 3 Si + have the most deshielded 29 Si NMR chemical shift. Natural localized molecular orbital (NLMO) analysis of the contributions to paramagnetic shielding ( σ p ) in these compounds shows that Si–R (R = alkyl, H) bonding orbitals are the major contributors to deshielding in this series. The Si–R bonding orbitals are coupled to the empty p-orbital in i Pr 3 Si + or Mes 3 Si + , or to the orbital in R 3 Si–X. This trend also applies to surface bound R 3 Si–O X . This model also explains chemical shift trends in recently isolated t Bu 2 SiH 2 + , t BuSiH 2 + , and SiH 3 + that show more shielded 29 Si NMR signals than R 3 Si + species. There is no correlation between isotropic 29 Si NMR chemical shift and charge at silicon. 
    more » « less
  2. Abstract

    A low‐spin and mononuclear vanadium complex, (Menacnac)V(CO)(η2‐P≡CtBu) (2) (Menacnac=[ArNC(CH3)]2CH, Ar=2,6‐iPr2C6H3), was prepared upon treatment of the vanadium neopentylidyne complex (Menacnac)V≡CtBu(OTf) (1) with Na(OCP)(diox)2.5(diox=1,4‐dioxane), while the isoelectronic ate‐complex [Na(15‐crown‐5)]{([ArNC(CH2)]CH[C(CH3)NAr])V(CO)(η2‐P≡CtBu)} (4), was obtained via the reaction of Na(OCP)(diox)2.5and ([ArNC(CH2)]CH[C(CH3)NAr])V≡CtBu(OEt2) (3) in the presence of crown‐ether. Computational studies suggest that the P‐atom transfer proceeds by [2+2]‐cycloaddition of the P≡C bond across the V≡CtBu moiety, followed by a reductive decarbonylation to form the V−C≡O linkage. The nature of the electronic ground state in diamagnetic complexes,2and4, was further investigated both theoretically and experimentally, using a combination of density functional theory (DFT) calculations, UV/Vis and NMR spectroscopies, cyclic voltammetry, X‐ray absorption spectroscopy (XAS) measurements, and comparison of salient bond metrics derived from X‐ray single‐crystal structural characterization. In combination, these data are consistent with a low‐valent vanadium ion in complexes2and4. This study represents the first example of a metathesis reaction between the P‐atom of [PCO]and an alkylidyne ligand.

     
    more » « less
  3. Abstract

    A low‐spin and mononuclear vanadium complex, (Menacnac)V(CO)(η2‐P≡CtBu) (2) (Menacnac=[ArNC(CH3)]2CH, Ar=2,6‐iPr2C6H3), was prepared upon treatment of the vanadium neopentylidyne complex (Menacnac)V≡CtBu(OTf) (1) with Na(OCP)(diox)2.5(diox=1,4‐dioxane), while the isoelectronic ate‐complex [Na(15‐crown‐5)]{([ArNC(CH2)]CH[C(CH3)NAr])V(CO)(η2‐P≡CtBu)} (4), was obtained via the reaction of Na(OCP)(diox)2.5and ([ArNC(CH2)]CH[C(CH3)NAr])V≡CtBu(OEt2) (3) in the presence of crown‐ether. Computational studies suggest that the P‐atom transfer proceeds by [2+2]‐cycloaddition of the P≡C bond across the V≡CtBu moiety, followed by a reductive decarbonylation to form the V−C≡O linkage. The nature of the electronic ground state in diamagnetic complexes,2and4, was further investigated both theoretically and experimentally, using a combination of density functional theory (DFT) calculations, UV/Vis and NMR spectroscopies, cyclic voltammetry, X‐ray absorption spectroscopy (XAS) measurements, and comparison of salient bond metrics derived from X‐ray single‐crystal structural characterization. In combination, these data are consistent with a low‐valent vanadium ion in complexes2and4. This study represents the first example of a metathesis reaction between the P‐atom of [PCO]and an alkylidyne ligand.

     
    more » « less
  4. Abstract

    Decarbonylation along with E atom transfer from Na(OCE) (E=P, As) to an isocyanide coordinated to the tetrahedral TiIIcomplex [(TptBu,Me)TiCl], yielded the [(TptBu,Me)Ti(η3‐ECNAd)] species (Ad=1‐adamantyl, TptBu,Me−=hydrotris(3‐tert‐butyl‐5‐methylpyrazol‐1‐yl)borate). In the case of E=P, the cyanophosphide ligand displays nucleophilic reactivity toward Al(CH3)3; moreover, its bent geometry hints to a reduced Ad−NCP3−resonance contributor. The analogous and rarer mono‐substituted cyanoarsenide ligand, Ad−NCAs3−, shows the same unprecedented coordination mode but with shortening of the N=C bond. As opposed to TiII, VIIfails to promote P atom transfer to AdNC, yielding instead [(TptBu,Me)V(OCP)(CNAd)]. Theoretical studies revealed the rare ECNAd moieties to be stabilized by π‐backbonding interactions with the former TiIIion, and their assembly to most likely involve a concerted E atom transfer between Ti‐bound OCEto AdNC ligands when studying the reaction coordinate for E=P.

     
    more » « less
  5. Abstract

    Decarbonylation along with E atom transfer from Na(OCE) (E=P, As) to an isocyanide coordinated to the tetrahedral TiIIcomplex [(TptBu,Me)TiCl], yielded the [(TptBu,Me)Ti(η3‐ECNAd)] species (Ad=1‐adamantyl, TptBu,Me−=hydrotris(3‐tert‐butyl‐5‐methylpyrazol‐1‐yl)borate). In the case of E=P, the cyanophosphide ligand displays nucleophilic reactivity toward Al(CH3)3; moreover, its bent geometry hints to a reduced Ad−NCP3−resonance contributor. The analogous and rarer mono‐substituted cyanoarsenide ligand, Ad−NCAs3−, shows the same unprecedented coordination mode but with shortening of the N=C bond. As opposed to TiII, VIIfails to promote P atom transfer to AdNC, yielding instead [(TptBu,Me)V(OCP)(CNAd)]. Theoretical studies revealed the rare ECNAd moieties to be stabilized by π‐backbonding interactions with the former TiIIion, and their assembly to most likely involve a concerted E atom transfer between Ti‐bound OCEto AdNC ligands when studying the reaction coordinate for E=P.

     
    more » « less