skip to main content


Title: Lewis base-complexed magnesium dithiolenes
The first magnesium-based dithiolene, 2 , was prepared by reaction of the lithium dithiolene radical, 1˙ , with 2-mesitylmagnesium bromide. Reaction of 2 with N-heterocyclic carbenes (in toluene) gave a carbene-stabilized magnesium monodithiolene complex, 3 . Complex 3 , in turn, is readily converted to a THF-solvated magnesium bis-dithiolene dianion, 4 , via partial hydrolysis in polar solvents ( i.e. , THF/CH 3 CN). Compounds 2 , 3 and 4 have been spectroscopically and structurally characterized and probed by DFT computations.  more » « less
Award ID(s):
1661604 1855641
PAR ID:
10118807
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Chemical Communications
Volume:
55
Issue:
56
ISSN:
1359-7345
Page Range / eLocation ID:
8087 to 8089
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. While the 1 : 1 reaction of 3 with an N-heterocyclic carbene ({(Me)CN(i-Pr)} 2 C:) in THF resulted in ligand-substituted product 4, the corresponding 1 : 2 reaction (in the presence of H 2 O) gives the first structurally characterized germanium tris(dithiolene)dianion 5 as the major product and the “naked” dithiolene radical 6˙ as a minor by-product. The structure and bonding of 4 and 5 were probed by experimental and theoretical methods. Our study suggests that carbene-mediated partial hydrolysis may represent a new method to access tris(dithiolene) complexes of main-group elements. 
    more » « less
  2. Abstract

    The 1 : 2 reaction of the imidazole‐based dithiolate (2) with GeCl2 • dioxane in THF/TMEDA gives3, a TMEDA‐complexed dithiolene‐based germylene. Compound3is converted to monothiolate‐complexed (5) and N‐heterocyclic carbene‐complexed (7) germanium(II) dithiolene complexes via Lewis base ligand exchange. A bis‐dithiolene‐based germylene (8), involving a 3c–4e S‐Ge‐S bond, has also been synthesized through controlled hydrolysis of7. The bonding nature of3,5, and8was investigated by both experimental and theoretical methods.

     
    more » « less
  3. Abstract

    Whereas low‐temperature (−78 °C) reaction of the lithium dithiolene radical1.with boron bromide gives the dibromoboron dithiolene radical2., the parallel reaction of1.with (C6H11)2BCl (0 °C) affords the dicyclohexylboron dithiolene radical3.. Radicals2.and3.were characterized by single‐crystal X‐ray diffraction, UV/Vis, and EPR spectroscopy. The nature of these radicals was also probed computationally. Under mild conditions,3.undergoes unexpected thiourea‐mediated B−C bond activation to give zwitterion4, which may be regarded as an anionic dithiolene‐modified carbene complex of the sulfenyl cation RS+(R=cyclohexyl).

     
    more » « less
  4. Abstract

    Whereas low‐temperature (−78 °C) reaction of the lithium dithiolene radical1.with boron bromide gives the dibromoboron dithiolene radical2., the parallel reaction of1.with (C6H11)2BCl (0 °C) affords the dicyclohexylboron dithiolene radical3.. Radicals2.and3.were characterized by single‐crystal X‐ray diffraction, UV/Vis, and EPR spectroscopy. The nature of these radicals was also probed computationally. Under mild conditions,3.undergoes unexpected thiourea‐mediated B−C bond activation to give zwitterion4, which may be regarded as an anionic dithiolene‐modified carbene complex of the sulfenyl cation RS+(R=cyclohexyl).

     
    more » « less
  5. Treatment of Mn(N(SiMe3)2)2(THF)2 with bulky chelating bis(alkoxide) ligand [1,1′:4′,1′′-terphenyl]-2,2′′-diylbis(diphenylmethanol) (H2[O-terphenyl-O]Ph) formed a seesaw manganese(II) complex Mn[O-terphenyl-O]Ph(THF)2, characterized by structural, spectroscopic, magnetic, and analytical methods. The reactivity of Mn[O-terphenyl-O]Ph(THF)2 with various nitrene precursors was investigated. No reaction was observed between Mn[O-terphenyl-O]Ph(THF)2 and aryl azides. In contrast, the treatment of Mn[O-terphenyl-O]Ph(THF)2 with iminoiodinane PhINTs (Ts = p-toluenesulfonyl) was consistent with the formation of a metal-nitrene complex. In the presence of styrene, the reaction led to the formation of aziridine. Combining varying ratios of styrene and PhINTs in different solvents with 10 mol% of Mn[O-terphenyl-O]Ph(THF)2 at room temperature produced 2-phenylaziridine in up to a 79% yield. Exploration of the reactivity of Mn[O-terphenyl-O]Ph(THF)2 with various olefins revealed (1) moderate aziridination yields for p-substituted styrenes, irrespective of the electronic nature of the substituent; (2) moderate yield for 1,1′-disubstituted α-methylstyrene; (3) no aziridination for aliphatic α-olefins; (4) complex product mixtures for the β-substituted styrenes. DFT calculations suggest that iminoiodinane is oxidatively added upon binding to Mn, and the resulting formal imido intermediate has a high-spin Mn(III) center antiferromagnetically coupled to an imidyl radical. This imidyl radical reacts with styrene to form a sextet intermediate that readily reductively eliminates the formation of a sextet Mn(II) aziridine complex. 
    more » « less