skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Aziridination Reactivity of a Manganese(II) Complex with a Bulky Chelating Bis(Alkoxide) Ligand
Treatment of Mn(N(SiMe3)2)2(THF)2 with bulky chelating bis(alkoxide) ligand [1,1′:4′,1′′-terphenyl]-2,2′′-diylbis(diphenylmethanol) (H2[O-terphenyl-O]Ph) formed a seesaw manganese(II) complex Mn[O-terphenyl-O]Ph(THF)2, characterized by structural, spectroscopic, magnetic, and analytical methods. The reactivity of Mn[O-terphenyl-O]Ph(THF)2 with various nitrene precursors was investigated. No reaction was observed between Mn[O-terphenyl-O]Ph(THF)2 and aryl azides. In contrast, the treatment of Mn[O-terphenyl-O]Ph(THF)2 with iminoiodinane PhINTs (Ts = p-toluenesulfonyl) was consistent with the formation of a metal-nitrene complex. In the presence of styrene, the reaction led to the formation of aziridine. Combining varying ratios of styrene and PhINTs in different solvents with 10 mol% of Mn[O-terphenyl-O]Ph(THF)2 at room temperature produced 2-phenylaziridine in up to a 79% yield. Exploration of the reactivity of Mn[O-terphenyl-O]Ph(THF)2 with various olefins revealed (1) moderate aziridination yields for p-substituted styrenes, irrespective of the electronic nature of the substituent; (2) moderate yield for 1,1′-disubstituted α-methylstyrene; (3) no aziridination for aliphatic α-olefins; (4) complex product mixtures for the β-substituted styrenes. DFT calculations suggest that iminoiodinane is oxidatively added upon binding to Mn, and the resulting formal imido intermediate has a high-spin Mn(III) center antiferromagnetically coupled to an imidyl radical. This imidyl radical reacts with styrene to form a sextet intermediate that readily reductively eliminates the formation of a sextet Mn(II) aziridine complex.  more » « less
Award ID(s):
1855681
PAR ID:
10413735
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Molecules
Volume:
27
Issue:
18
ISSN:
1420-3049
Page Range / eLocation ID:
5751
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Synthesis of new chromium(II) complexes with chelating bis(alkoxide) ligand [OO]Ph (H2[OO]Ph = [1,1′:4′,1′’-terphenyl]-2,2′’-diylbis(diphenylmethanol)) and their subsequent reactivity in the context of catalytic production of carbodiimides from azides and isocyanides are described. Two different Cr(II) complexes are obtained, as a function of the crystallization solvent: mononuclear Cr[OO]Ph(THF)2 (in toluene/THF, THF = tetrahydrofuran) and dinuclear Cr2([OO]Ph)2 (in CH2Cl2/THF). The electronic structure and bonding in Cr[OO]Ph(THF)2 were probed by density functional theory calculations. Isolated Cr2([OO]Ph)2 undergoes facile reaction with 4-MeC6H4N3, 4-MeOC6H4N3, or 3,5-Me2C6H3N3 to yield diamagnetic Cr(VI) bis(imido) complexes; a structure of Cr[OO]Ph(N(4-MeC6H4))2 was confirmed by X-ray crystallography. The reaction of Cr2([OO]Ph)2 with bulkier azides N3R (MesN3, AdN3) forms paramagnetic products, formulated as Cr[OO]Ph(NR). The attempted formation of a Cr–alkylidene complex (using N2CPh2) instead forms chromium(VI) bis(diphenylmethylenehydrazido) complex Cr[OO]Ph(NNCPh2)2. Catalytic formation of carbodiimides was investigated for the azide/isocyanide mixtures containing various aryl azides and isocyanides. The formation of carbodiimides was found to depend on the nature of organoazide: whereas bulky mesitylazide led to the formation of carbodiimides with all isocyanides, no carbodiimide formation was observed for 3,5-dimethylphenylazide or 4-methylphenylazide. Treatment of Cr2([OO]Ph)2 or H2[OO]Ph with NO+ leads to the formation of [1,2-b]-dihydroindenofluorene, likely obtained via carbocation-mediated cyclization of the ligand. 
    more » « less
  2. null (Ed.)
    Recent research has highlighted the key role played by the electron affinity of the active metal-nitrene/imido oxidant as the driving force in nitrene additions to olefins to afford valuable aziridines. The present work showcases a library of Co(II) reagents that, unlike the previously examined Mn(II) and Fe(II) analogues, demonstrate reactivity trends in olefin aziridinations that cannot be solely explained by the electron affinity criterion. A family of Co(II) catalysts (17 members) has been synthesized with the assistance of a trisphenylamido-amine scaffold decorated by various alkyl, aryl, and acyl groups attached to the equatorial amidos. Single-crystal X-ray diffraction analysis, cyclic voltammetry and EPR data reveal that the high-spin Co(II) sites (S = 3/2) feature a minimal [N3N] coordination and span a range of 1.4 V in redox potentials. Surprisingly, the Co(II)-mediated aziridination of styrene demonstrates reactivity patterns that deviate from those anticipated by the relevant electrophilicities of the putative metal nitrenes. The representative L4Co catalyst (−COCMe3 arm) is operating faster than the L8Co analogue (−COCF3 arm), in spite of diminished metal-nitrene electrophilicity. Mechanistic data (Hammett plots, KIE, stereocontrol studies) reveal that although both reagents follow a two-step reactivity path (turnover-limiting metal-nitrene addition to the Cb atom of styrene, followed by product-determining ring-closure), the L4Co catalyst is associated with lower energy barriers in both steps. DFT calculations indicate that the putative [L4Co]NTs and [L8Co]NTs species are electronically distinct, inasmuch as the former exhibits a single-electron oxidized ligand arm. In addition, DFT calculations suggest that including London dispersion corrections for L4Co (due to the polarizability of the tert-Bu substituent) can provide significant stabilization of the turnover-limiting transition state. This study highlights how small ligand modifications can generate stereoelectronic variants that in certain cases are even capable of overriding the preponderance of the metal-nitrene electrophilicity as a driving force. 
    more » « less
  3. Despite the myriad Cu-catalyzed nitrene transfer methodologies to form new C–N bonds (e.g.,amination, aziridination), the critical reaction intermediates have largely eluded direct characterization due to their inherent reactivity. Herein, we report the synthesis of dipyrrin-supported Cu nitrenoid adducts, investigate their spectroscopic features, and probe their nitrene transfer chemistry through detailed mechanistic analyses. Treatment of the dipyrrin CuI complexes with substituted organoazides affords terminally ligated organoazide adducts with minimal activation of the azide unit as evidenced by vibrational spectroscopy and single crystal X-ray diffraction. The Cu nitrenoid, with an electronic structure most consistent with a triplet nitrene adduct of CuI, is accessed following geometric rearrangement of the azide adduct from k1-N terminal ligation to k1-N internal ligation with subsequent expulsion of N2. For perfluorinated arylazides, stoichiometric and catalytic C–H amination and aziridination was observed. Mechanistic analysis employing substrate competition reveals an enthalpically-controlled, electrophilic nitrene transfer for primary and secondary C–H bonds. Kinetic analyses for catalytic amination using tetrahydrofuran as a model substrate reveal pseudo-first order kineticsunderrelevantaminationconditionswithafirst-orderdependenceonbothCuandorganoazide. Activation parameters determined from Eyring analysis(DH‡=9.2(2)kcalmol−1,DS‡=−42(2)calmol−1 K−1, DG‡ 298K =21.7(2) kcal mol−1) and parallel kinetic isotope effect measurements (1.10(2)) are consistent with rate-limiting Cu nitrenoid formation, followed by a proposed stepwise hydrogen-atom abstraction and rapid radical recombination to furnish the resulting C–N bond. The proposed mechanism and experimental analysis are further corroborated by density functional theory calculations. Multiconfigurational calculations provide insight into the electronic structure of the catalytically relevant Cu nitrene intermediates. The findings presented herein will assist in the development of future methodology for Cu-mediated C–N bond forming catalysis. 
    more » « less
  4. Abstract A photoredox/cobalt dual catalytic procedure has been developed that allows benzoylation of olefins. Here the photoredox catalyst effects the decarboxylation of α‐ketoacids to form benzoyl radicals. After addition of this radical to styrenes, the cobalt catalyst abstracts a H‐atom. Hydrogen evolution from the putative cobalt hydride intermediate allows a Heck‐like aroylation without the need for a stoichiometric oxidant. Mechanistic studies reveal that electronically different styrenes lead to a curved Hammett plot, thus suggesting a change in product‐determining step in the catalytic mechanism. 
    more » « less
  5. Isostructural Cr and Fe nanoporous MIL-101, synthesized without mineralizing agents, are investigated for styrene oxidation utilizing aqueous hydrogen peroxide to yield valuable oxygenates for chemical synthesis applications. Styrene conversion rates and oxygenate product distributions both depend on metal identity, as MIL-101(Fe) is more reactive for total styrene oxidation and is more pathway selective, preferring aldehyde (benzaldehyde) formation at the α-carbon to the aromatic ring, where MIL-101(Cr) sustains epoxide (styrene oxide) production at the same α-carbon. These pathways often involve hydrogen peroxide derived radical intermediates (O, –HOO˙, –HO − ˙) and metallocycle transition states. We postulate that the higher reactivity of one of these surface intermediates, Fe( iv )O relative to Cr( iv )O, leads to higher styrene oxidation rates for MIL-101(Fe), while higher electrophilicity of Cr( iii )–OOH intermediates translates to the higher styrene oxide selectivity observed for MIL-101(Cr). Secondary styrene oxide and benzaldehyde conversions are observed over both analogs, but the former is more prevalent over MIL-101(Fe) due to higher Lewis/Brønsted acid site density and strength compared to MIL-101(Cr). Recyclability experiments combined with characterization via XRD, SEM/EDXS, and FT-IR and UV-vis spectroscopies show that the nature of MIL-101(Fe) sites does not change significantly with each cycle, whereas MIL-101(Cr) suffers from metal leaching, which impacts styrene conversion rates and product distribution. Both catalysts require active site regeneration, though MIL-101(Fe) sites are more susceptible to reactivation, even under mild conditions. Finally, examination of styrene conversion for three unique synthesized phases of MIL-101(Cr) rationalizes that nodal defects are largely responsible for observed reactivity and selectivity but predispose the framework to metal leaching as a predominant deactivation mechanism. 
    more » « less