skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Asynchronous Local Construction of Bounded-Degree Network Topologies Using Only Neighborhood Information
We consider the ad-hoc networks consisting of n wireless nodes that are located on the plane. Any two given nodes are called neighbors if they are located within a certain distance (communication range) from one another. A given node can be directly connected to any one of its neighbors, and picks its connections according to a unique topology control algorithm that is available at every node. Given that each node knows only the indices (unique identification numbers) of its one and two-hop neighbors, we identify an algorithm that preserves connectivity and can operate without the need of any synchronization among nodes. Moreover, the algorithm results in a sparse graph with at most 5n edges and a maximum node degree of 10. Existing algorithms with the same promises further require neighbor distance and/or direction information at each node. We also evaluate the performance of our algorithm for random networks. In this case, our algorithm provides an asymptotically connected network with n(1+o(1)) edges with a degree less than or equal to 6 for 1-o(1) fraction of the nodes. We also introduce another asynchronous connectivity-preserving algorithm that can provide an upper bound as well as a lower bound on node degrees.  more » « less
Award ID(s):
1814717
PAR ID:
10118984
Author(s) / Creator(s):
;
Date Published:
Journal Name:
IEEE transactions on communications
Volume:
67
Issue:
3
ISSN:
1558-0857
Page Range / eLocation ID:
2101-2113
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper focuses on showing time-message trade-offs in distributed algorithms for fundamental problems such as leader election, broadcast, spanning tree (ST), minimum spanning tree (MST), minimum cut, and many graph verification problems. We consider the synchronous CONGEST distributed computing model and assume that each node has initial knowledge of itself and the identifiers of its neighbors - the so-called KT_1 model - a well-studied model that also naturally arises in many applications. Recently, it has been established that one can obtain (almost) singularly optimal algorithms, i.e., algorithms that have simultaneously optimal time and message complexity (up to polylogarithmic factors), for many fundamental problems in the standard KT_0 model (where nodes have only local knowledge of themselves and not their neighbors). The situation is less clear in the KT_1 model. In this paper, we present several new distributed algorithms in the KT_1 model that trade off between time and message complexity. Our distributed algorithms are based on a uniform and general approach which involves constructing a sparsified spanning subgraph of the original graph - called a danner - that trades off the number of edges with the diameter of the sparsifier. In particular, a key ingredient of our approach is a distributed randomized algorithm that, given a graph G and any delta in [0,1], with high probability constructs a danner that has diameter O~(D + n^{1-delta}) and O~(min{m,n^{1+delta}}) edges in O~(n^{1-delta}) rounds while using O~(min{m,n^{1+delta}}) messages, where n, m, and D are the number of nodes, edges, and the diameter of G, respectively. Using our danner construction, we present a family of distributed randomized algorithms for various fundamental problems that exhibit a trade-off between message and time complexity and that improve over previous results. Specifically, we show the following results (all hold with high probability) in the KT_1 model, which subsume and improve over prior bounds in the KT_1 model (King et al., PODC 2014 and Awerbuch et al., JACM 1990) and the KT_0 model (Kutten et al., JACM 2015, Pandurangan et al., STOC 2017 and Elkin, PODC 2017): 1) Leader Election, Broadcast, and ST. These problems can be solved in O~(D+n^{1-delta}) rounds using O~(min{m,n^{1+delta}}) messages for any delta in [0,1]. 2) MST and Connectivity. These problems can be solved in O~(D+n^{1-delta}) rounds using O~(min{m,n^{1+delta}}) messages for any delta in [0,0.5]. In particular, for delta = 0.5 we obtain a distributed MST algorithm that runs in optimal O~(D+sqrt{n}) rounds and uses O~(min{m,n^{3/2}}) messages. We note that this improves over the singularly optimal algorithm in the KT_0 model that uses O~(D+sqrt{n}) rounds and O~(m) messages. 3) Minimum Cut. O(log n)-approximate minimum cut can be solved in O~(D+n^{1-delta}) rounds using O~(min{m,n^{1+delta}}) messages for any delta in [0,0.5]. 4) Graph Verification Problems such as Bipartiteness, Spanning Subgraph etc. These can be solved in O~(D+n^{1-delta}) rounds using O~(min{m,n^{1+delta}}) messages for any delta in [0,0.5]. 
    more » « less
  2. Abstract We define a bridge node to be a node whose neighbor nodes are sparsely connected to each other and are likely to be part of different components if the node is removed from the network. We propose a computationally light neighborhood-based bridge node centrality (NBNC) tuple that could be used to identify the bridge nodes of a network as well as rank the nodes in a network on the basis of their topological position to function as bridge nodes. The NBNC tuple for a node is asynchronously computed on the basis of the neighborhood graph of the node that comprises of the neighbors of the node as vertices and the links connecting the neighbors as edges. The NBNC tuple for a node has three entries: the number of components in the neighborhood graph of the node, the algebraic connectivity ratio of the neighborhood graph of the node and the number of neighbors of the node. We analyze a suite of 60 complex real-world networks and evaluate the computational lightness, effectiveness, efficiency/accuracy and uniqueness of the NBNC tuple vis-a-vis the existing bridgeness related centrality metrics and the Louvain community detection algorithm. 
    more » « less
  3. This paper considers the Byzantine consensus problem for nodes with binary inputs. The nodes are interconnected by a network represented as an undirected graph, and the system is assumed to be synchronous. Under the classical point-to-point communication model, it is well-known that the following two conditions are both necessary and sufficient to achieve Byzantine consensus among n nodes in the presence of up to ƒ Byzantine faulty nodes: n & 3 #8805; 3 ≥ ƒ+ 1 and vertex connectivity at least 2 ƒ + 1. In the classical point-to-point communication model, it is possible for a faulty node to equivocate, i.e., transmit conflicting information to different neighbors. Such equivocation is possible because messages sent by a node to one of its neighbors are not overheard by other neighbors. This paper considers the local broadcast model. In contrast to the point-to-point communication model, in the local broadcast model, messages sent by a node are received identically by all of its neighbors. Thus, under the local broadcast model, attempts by a node to send conflicting information can be detected by its neighbors. Under this model, we show that the following two conditions are both necessary and sufficient for Byzantine consensus: vertex connectivity at least ⌋ 3 fƒ / 2 ⌊ + 1 and minimum node degree at least 2 ƒ. Observe that the local broadcast model results in a lower requirement for connectivity and the number of nodes n, as compared to the point-to-point communication model. We extend the above results to a hybrid model that allows some of the Byzantine faulty nodes to equivocate. The hybrid model bridges the gap between the point-to-point and local broadcast models, and helps to precisely characterize the trade-off between equivocation and network requirements. 
    more » « less
  4. Learning network topology from partial knowledge of its connectivity is an important objective in practical scenarios of communication networks and social-media networks. Representing such networks as connected graphs, exploring and recovering connectivity information between network nodes can help visualize the network topology and improve network utility. This work considers the use of simple hop distance measurement obtained from a fraction of anchor/source nodes to reconstruct the node connectivity relationship for large scale networks of unknown connection topology. Our proposed approach consists of two steps. We first develop a tree-based search strategy to determine constraints on unknown network edges based on the hop count measurements. We then derive the logical distance between nodes based on principal component analysis (PCA) of the measurement matrix and propose a binary hypothesis test for each unknown edge. The proposed algorithm can effectively improve both the accuracy of connectivity detection and the successful delivery rate in data routing applications. 
    more » « less
  5. There has been significant recent interest in \emph{graph-based nearest neighbor search methods}, many of which are centered on the construction of (approximately) {\em navigable}\/ graphs over high-dimensional point sets. A graph is navigable if we can successfully move from any starting node to any target node using a greedy routing strategy where we always move to the neighbor that is closest to the destination according to the given distance function. The complete graph is obviously navigable for any point set, but the important question for applications is if sparser graphs can be constructed. While this question is fairly well understood in low-dimensions, we establish some of the first upper and lower bounds for high-dimensional point sets. First, we give a simple and efficient way to construct a navigable graph with average degree $$O(\sqrt{n \log n })$$ for any set of $$n$$ points, in any dimension, for any distance function. We compliment this result with a nearly matching lower bound: even under the Euclidean metric in $$O(\log n)$$ dimensions, a random point set has no navigable graph with average degree $$O(n^{\alpha})$$ for any $$\alpha < 1/2$$. Our lower bound relies on sharp anti-concentration bounds for binomial random variables, which we use to show that the near-neighborhoods of a set of random points do not overlap significantly, forcing any navigable graph to have many edges. 
    more » « less