skip to main content

Title: Exact Byzantine Consensus on Undirected Graphs under Local Broadcast Model
This paper considers the Byzantine consensus problem for nodes with binary inputs. The nodes are interconnected by a network represented as an undirected graph, and the system is assumed to be synchronous. Under the classical point-to-point communication model, it is well-known that the following two conditions are both necessary and sufficient to achieve Byzantine consensus among n nodes in the presence of up to ƒ Byzantine faulty nodes: n & 3 #8805; 3 ≥ ƒ+ 1 and vertex connectivity at least 2 ƒ + 1. In the classical point-to-point communication model, it is possible for a faulty node to equivocate, i.e., transmit conflicting information to different neighbors. Such equivocation is possible because messages sent by a node to one of its neighbors are not overheard by other neighbors. This paper considers the local broadcast model. In contrast to the point-to-point communication model, in the local broadcast model, messages sent by a node are received identically by all of its neighbors. Thus, under the local broadcast model, attempts by a node to send conflicting information can be detected by its neighbors. Under this model, we show that the following two conditions are both necessary and sufficient for Byzantine consensus: vertex connectivity at more » least ⌋ 3 fƒ / 2 ⌊ + 1 and minimum node degree at least 2 ƒ. Observe that the local broadcast model results in a lower requirement for connectivity and the number of nodes n, as compared to the point-to-point communication model. We extend the above results to a hybrid model that allows some of the Byzantine faulty nodes to equivocate. The hybrid model bridges the gap between the point-to-point and local broadcast models, and helps to precisely characterize the trade-off between equivocation and network requirements. « less
; ;
Award ID(s):
Publication Date:
Journal Name:
ACM Symposium on Principles in Distributed Computing
Page Range or eLocation-ID:
327 to 336
Sponsoring Org:
National Science Foundation
More Like this
  1. We consider Byzantine consensus in a synchronous system where nodes are connected by a network modeled as a directed graph, i.e., communication links between neighboring nodes are not necessarily bi-directional. The directed graph model is motivated by wireless networks wherein asymmetric communication links can occur. In the classical point-to-point communication model, a message sent on a communication link is private between the two nodes on the link. This allows a Byzantine faulty node to equivocate, i.e., send inconsistent information to its neighbors. This paper considers the local broadcast model of communication, wherein transmission by a node is received identically bymore »all of its outgoing neighbors, effectively depriving the faulty nodes of the ability to equivocate. Prior work has obtained sufficient and necessary conditions on undirected graphs to be able to achieve Byzantine consensus under the local broadcast model. In this paper, we obtain tight conditions on directed graphs to be able to achieve Byzantine consensus with binary inputs under the local broadcast model. The results obtained in the paper provide insights into the trade-off between directionality of communication links and the ability to achieve consensus.« less
  2. Jurdziński, T ; Schmid, S (Ed.)
    In the multiparty equality problem, each of the n nodes starts with a k-bit input. If there is a mismatch between the inputs, then at least one node must be able to detect it. The cost of a multiparty equality protocol is the total number of bits sent in the protocol. We consider the problem of minimizing this communication cost under the local broadcast model for the case where the underlying communication graph is undirected. In the local broadcast model of communication, a message sent by a node is received identically by all of its neighbors. This is in contrastmore »to the classical point-to-point communication model, where a message sent by a node to one of its neighbors is received only by its intended recipient. Under point-to-point communication, there exists a simple protocol which is competitive within a factor 2 of the lower bound [1]. In this protocol, a rooted spanning tree is fixed and each node sends its entire input to its parent in the tree. On receiving a value from its child, a node compares it against its own input to check if the two values match. Ignoring lower order additive terms, a more complicated protocol comes within a factor 4/3 of the lower bound and is tight for certain classes of graphs [1]. Tight results, ignoring lower order terms, are also known for complete graphs [2, 9]. We study the multiparty equality problem under the local broadcast model. Recently, our work has shown that the connectivity requirements for Byzantine consensus are lower in the local broadcast model as compared to the classical model [7, 8]. In this work, 1. we identify a lower bound for the multiparty equality problem in this model. 2. we first identify simple protocols, wherein nodes are restricted to either transmit their entire input or not transmit anything at all, and find that these can cost Ω(logn) times the lower bound using existing example for the set cover problem [12]. 3. we then design a protocol to solve the problem within a constant factor of the lower bound.« less
  3. Gilbert, Seth (Ed.)
    Byzantine consensus is a classical problem in distributed computing. Each node in a synchronous system starts with a binary input. The goal is to reach agreement in the presence of Byzantine faulty nodes. We consider the setting where communication between nodes is modelled via an undirected communication graph. In the classical point-to-point communication model all messages sent on an edge are private between the two endpoints of the edge. This allows a faulty node to equivocate, i.e., lie differently to its different neighbors. Different models have been proposed in the literature that weaken equivocation. In the local broadcast model, everymore »message transmitted by a node is received identically and correctly by all of its neighbors. In the hypergraph model, every message transmitted by a node on a hyperedge is received identically and correctly by all nodes on the hyperedge. Tight network conditions are known for each of the three cases. We introduce a more general model that encompasses all three of these models. In the local multicast model, each node u has one or more local multicast channels. Each channel consists of multiple neighbors of u in the communication graph. When node u sends a message on a channel, it is received identically by all of its neighbors on the channel. For this model, we identify tight network conditions for consensus. We observe how the local multicast model reduces to each of the three models above under specific conditions. In each of the three cases, we relate our network condition to the corresponding known tight conditions. The local multicast model also encompasses other practical network models of interest that have not been explored previously, as elaborated in the paper.« less
  4. Byzantine Fault Tolerant (BFT) protocols are designed to ensure correctness and eventual progress in the face of misbehaving nodes [1]. However, this does not prevent negative effects an adversary may have on performance: a faulty node may significantly affect the latency and throughput of the system without being detected. This is especially true in speculative protocols optimized for the best-case where a single leader can force the protocol into the worst case [3]. Systems like Aardvark [2] that are designed to maximize worst-case performance tolerate byzantine behavior without necessarily detecting who the perpetrator is. By forcing regular view changes, formore »example, they mitigate the effects of leaders who deliberately delay dissemination of messages, even if this behavior would be difficult to prove to a third party. Byzantine faults, by definition, can be difficult to detect. An error of 'commission', such as a message with a mismatching digest, can be proven. Errors of 'omission', such as delaying or failing to relay a message, as a rule cannot be proven, and the node responsible for these types of omission faults may not appear faulty to all observers. Nevertheless, we observe that they can reliably be detected. Designing protocols that detect and eject nodes is challenging for two reasons. First, some behaviors are observed by a subset of honest nodes and cannot be objectively proven to a third party. Second, any mechanism capable of ejecting nodes could be subverted by Byzantine nodes to eject honest nodes. This paper presents the Protocol for Ejecting All Corrupted Hosts (Peach, a mechanism for detecting and ejecting faulty nodes in Byzantine fault tolerant (BFT) protocols. Nodes submit votes to a trusted configuration manager that replaces faulty nodes once a threshold of votes are received. We implement Peach for two BFT protocol variants, a traditional pbft-style three-phase protocol and a speculative protocol, and evaluate its ability to respond to Byzantine behavior. This work makes the following contributions: (1) We present and prove a necessary and sufficient constraint on cluster membership guaranteeing that any nodes causing performance degradation via acts of omission will be detected. (2) We present an agreement protocol, PEACHes, in which replicas pass votes about their subjective local observations of possible omissions to a TTP. (3) We show how the separation of detection and effectuation allows fine-grained detection of malicious behavior that is compatible and easily integrated with existing systems. (4) We present DecentBFT, an extension of BFT-Smart to which we added a speculative fast path (similar to Zyzzva) and integrated PEACHes. (5) We show DecentBFT rapidly detects and mitigates a variety of performance attacks that would have gone undetected by the state of the art.« less
  5. This paper focuses on showing time-message trade-offs in distributed algorithms for fundamental problems such as leader election, broadcast, spanning tree (ST), minimum spanning tree (MST), minimum cut, and many graph verification problems. We consider the synchronous CONGEST distributed computing model and assume that each node has initial knowledge of itself and the identifiers of its neighbors - the so-called KT_1 model - a well-studied model that also naturally arises in many applications. Recently, it has been established that one can obtain (almost) singularly optimal algorithms, i.e., algorithms that have simultaneously optimal time and message complexity (up to polylogarithmic factors), formore »many fundamental problems in the standard KT_0 model (where nodes have only local knowledge of themselves and not their neighbors). The situation is less clear in the KT_1 model. In this paper, we present several new distributed algorithms in the KT_1 model that trade off between time and message complexity. Our distributed algorithms are based on a uniform and general approach which involves constructing a sparsified spanning subgraph of the original graph - called a danner - that trades off the number of edges with the diameter of the sparsifier. In particular, a key ingredient of our approach is a distributed randomized algorithm that, given a graph G and any delta in [0,1], with high probability constructs a danner that has diameter O~(D + n^{1-delta}) and O~(min{m,n^{1+delta}}) edges in O~(n^{1-delta}) rounds while using O~(min{m,n^{1+delta}}) messages, where n, m, and D are the number of nodes, edges, and the diameter of G, respectively. Using our danner construction, we present a family of distributed randomized algorithms for various fundamental problems that exhibit a trade-off between message and time complexity and that improve over previous results. Specifically, we show the following results (all hold with high probability) in the KT_1 model, which subsume and improve over prior bounds in the KT_1 model (King et al., PODC 2014 and Awerbuch et al., JACM 1990) and the KT_0 model (Kutten et al., JACM 2015, Pandurangan et al., STOC 2017 and Elkin, PODC 2017): 1) Leader Election, Broadcast, and ST. These problems can be solved in O~(D+n^{1-delta}) rounds using O~(min{m,n^{1+delta}}) messages for any delta in [0,1]. 2) MST and Connectivity. These problems can be solved in O~(D+n^{1-delta}) rounds using O~(min{m,n^{1+delta}}) messages for any delta in [0,0.5]. In particular, for delta = 0.5 we obtain a distributed MST algorithm that runs in optimal O~(D+sqrt{n}) rounds and uses O~(min{m,n^{3/2}}) messages. We note that this improves over the singularly optimal algorithm in the KT_0 model that uses O~(D+sqrt{n}) rounds and O~(m) messages. 3) Minimum Cut. O(log n)-approximate minimum cut can be solved in O~(D+n^{1-delta}) rounds using O~(min{m,n^{1+delta}}) messages for any delta in [0,0.5]. 4) Graph Verification Problems such as Bipartiteness, Spanning Subgraph etc. These can be solved in O~(D+n^{1-delta}) rounds using O~(min{m,n^{1+delta}}) messages for any delta in [0,0.5].« less